Skip to main content
Log in

Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The pea (Pisum sativum L.) varieties Baroness (United Kingdome) and Baccara (France) were transformed via Agrobacterium tumefaciens-mediated gene transfer with pGPTV binary vectors containing the bar gene in combination with two different antifungal genes coding for polygalacturonase-inhibiting protein (PGIP) from raspberry (Rubus idaeus L.) driven by a double 35S promoter, or the stilbene synthase (Vst1) from grape (Vitis vinifera L.) driven by its own elicitor-inducible promoter. Transgenic lines were established and transgenes combined via conventional crossing. Resveratrol, produced by Vst1 transgenic plants, was detected using HPLC and the PGIP expression was determined in functional inhibition assays against fungal polygalacturonases. Stable inheritance of the antifungal genes in the transgenic plants was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FW:

Fresh weight

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcriptase PCR

References

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:7006

    Article  Google Scholar 

  • Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519

    Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20(6):1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Berger DK, Oelofse D, Arendse MS, Du Plessis E, Dubery IA (2000) Bean polygalacturonase inhibitor protein-1 (PGIP-1) inhibits polygalacturonases from Stenocarpella maydis. Physiol Mol Plant Pathol 57:5–14

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method forthe quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brown DCW, Atanassov A (1985) Role of genetic backround in somatic embryogenesis in Medicago. Plant Cell Tissue Organ Cult 4:111–122

    Article  Google Scholar 

  • Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant compounds resveratrol glucosides. Transgenic Res 13:203–214

    Article  PubMed  Google Scholar 

  • Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  PubMed  CAS  Google Scholar 

  • De Bolle MFC, Butaye KMJ, Coucke WJW, Goderis IJWM, Wouters PFJ, von Boxel N, Broekaert WF, Cammue BPA (2003) Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci 165:169–179

    Article  CAS  Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIP) in defense against pathogenic fungi. Ann Rev Phytopathol 39:313–335

    Article  CAS  Google Scholar 

  • De Neve M, De Buck S, De Wilde C, Van Houdt H, Strobbe I, Jacobs A, Van Montagu M, Depicker A (1999) Gene silencing results in instability of antibody production in transgenic plants. Mol Gen Genet 260:582–592

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(1):13–15

    Google Scholar 

  • Faize M, Sugiyama T, Faize L, Ishii H (2003) Polygalacturonase-inhibiting protein (PGIP) from Japanese pear: possible involvement in resistance against scab. Mol Plant-Microbe Interact 63:319–327

    CAS  Google Scholar 

  • Favaron F, Ovidio R, Porceddu E, Alghisi P (1994) Purification and molecular characterisation of a soybean polygalacturonase-inhibiting protein. Planta 195:80–87

    Article  PubMed  CAS  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Biotechnology 12:883–888

    Article  Google Scholar 

  • Grant JE, Cooper PA, McAra AE, Frew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep 15:254–258

    Article  CAS  Google Scholar 

  • Grant JE, Thomson LMJ, Pither-Joyce MD, Dale TM, Cooper PA (2003) Influence of Agrobacterium tumefaciens strain on the production of transgenic peas (Pisum sativum L.). Plant Cell Rep 21:1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmeltzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature (London) 361:153–156

    Article  CAS  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21th century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 286:290–252

    Article  Google Scholar 

  • Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant-Microbe Interact 13:551–562

    PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium vectors for plant transformation. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Iyer LM, Kumpatla SP, Chandrasekharan MB, Hall TC (2000) Transgene silencing in monocots. Plant Mol Biol 43:323–346

    Article  PubMed  CAS  Google Scholar 

  • James VA, Avart C, Worland B, Snape JW, Vain P (2002) The relationship between homozygous and hemizygous transgene expression levels over generations in populations of transgenic rice plants. Theor Appl Genet 104:553–561

    Article  PubMed  CAS  Google Scholar 

  • Johnston DJ, Ramanathan V, Williamson B (1993) A protein from immature raspberry fruits which inhibits endopolygalacturonases from Botrytis cinerea and other microorganisms. J Exp Bot 44:971–976

    CAS  Google Scholar 

  • Keon JPR, Waksman G (1990) Common amino acid domains among endopolygalacturonases of ascomycete fungi. Appl Environ Microbiol 56:2522–2528

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012

    Article  CAS  Google Scholar 

  • Lotter HC, Berger DK (2005) Anthracnose of lupins in South Africa in caused by Colletotrichum lupini var. setosum. Australas Plant Pathol 34:385–392

    Article  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJM, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Mette MF, Matzke AJM (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanism in plant and vertebrates. Plant Mol Biol 43:401–415

    Article  PubMed  CAS  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Ann Rev Plant Physiol Plant Mol Biol 47:23–48

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nadolska-Orczyk A, Orczyk W (2000) Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol Breeding 6:185–194

    Article  CAS  Google Scholar 

  • Polowick PL, Quandt J, Mahon JD (2000) The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. Plant Sci 153:161–170

    Article  PubMed  CAS  Google Scholar 

  • Powell ALT, Van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch, JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant-Microbe Interact 13:942–950

    PubMed  CAS  Google Scholar 

  • Puonti-Kaerlas J, Eriksson T, Engström P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor Appl Genet 80:246–252

    Article  Google Scholar 

  • Puonti-Kaerlas J, Eriksson T, Engström P (1992) Inheritance of a bacterial hygromycin phosphotransferase gene in the progeny of primary transgenic pea plants. Theor Appl Genet 84:443–450

    Article  Google Scholar 

  • Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757

    Article  PubMed  CAS  Google Scholar 

  • Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297–303

    Article  PubMed  CAS  Google Scholar 

  • Sotheeswaran S, Pasupathy J (1993) Distribution of resveratrol oligomers in plants. Phytochem 32:1083–1092

    Article  CAS  Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hänbler G, Mühlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  Google Scholar 

  • Stevens L, Stoopen GM, Elbers IJW, Molthofff JW, Bakker HAC, Lommen A, Bosch D, Jordi W (2000) Effect of climate conditions and plant developmental stage on the stability of antibodies expressed in transgenic tobacco. Plant Physiol 124:173–182

    Article  PubMed  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen H-J, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  PubMed  CAS  Google Scholar 

  • Taylor RJ, Secor GA (1988) An improved diffusion assay for quantifying the polygalacturonase content of Erwinia culture filtrates. Phytopathology 78:1101–1103

    CAS  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed  CAS  Google Scholar 

  • Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse AL, Lamuela-Raventos (1994) The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochem 37:571–573

    Article  CAS  Google Scholar 

  • Williamson B, Johnston DJ, Ramanathan V, McNicol RJ (1993) A polygalacturonase inhibitor from immature raspberry fruits: a possible new approach to grey mold control. Acta Hort 352:601–605

    Google Scholar 

  • Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241–250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We express our gratitude to Dr. D. Berger, University of Pretoria, South Africa for providing the fungus, Dr Brian Williamson and Dr Craig Simpson, SCRI Scotland, for the raspberry PGIP gene and Geetha Senthil, SCRI, for the PGIP-containing constructs. Last but not least we thank Günter Stoschek, Daniela Pontiggia, Maja Marheine and Claudia Wichmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kiesecker.

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, A., Jacobsen, HJ., de Kathen, A. et al. Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25, 1166–1173 (2006). https://doi.org/10.1007/s00299-006-0172-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0172-z

Keywords

Navigation