Skip to main content
Log in

Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The phytoalexin resveratrol (trans-3,5,4′-trihydroxy-stilbene), a natural component of resistance to fungal diseases in many plants, is synthesized by the enzyme trihydroxystilbene synthase (stilbene synthase, EC 2.3.1.95), which appears to be deficient or lacking in susceptible plants. Earlier workers isolated a stilbene synthase gene (Vst1) from grapevine (Vitis vinifera L.), which has subsequently been introduced as a transgene into a range of species to increase resistance of hosts to pathogens to which they were originally susceptible. Papaya (Carica papaya L.) is susceptible to a variety of fungal diseases, including root, stem, and fruit rot caused by the pathogen Phytophthora palmivora. Since resveratrol at 1.0 mM inhibited mycelium growth of P. palmivora in vitro, we hypothesized that papaya resistance to this pathogen might be increased by transformation with the grapevine stilbene synthase construct pVst1, containing the Vst1 gene and its pathogen-inducible promoter. Multiple transformed lines were produced, clonally propagated, and evaluated with a leaf disk bioassay and whole plant response to inoculation with P. palmivora. RNA transcripts of stilbene synthase and resveratrol glycoside were induced in plant lines transformed with the grapevine pVst1 construct shortly after pathogen inoculation, and the transformed papaya lines exhibited increased resistance to P. palmivora. The immature transformed plants appear normal and will be advanced to field trials to evaluate their utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BA :

Benzyladenine

2,4-D :

2, 4-Dichlorophenoxyacetic acid

IBA :

Indolebutyric acid

MS :

Murashige and Skoog plant culture medium

NAA :

Naphthaleneacetic acid

References

  • Adrian M, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity of resveratrol, a stilbene compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689–1702

    Article  CAS  Google Scholar 

  • Bertelli AAE (1998) Modulatory effect of resveratrol, a natural phytoalexin, on endothelial adhesion molecules and intracellular signal transduction. Pharm Biol 36:44–52

    Article  CAS  Google Scholar 

  • Blaich R, Bachmann O (1980) Die Resveratrolsynthese bei Vitaceen: Induktion und Zytologische Beobachtungen (Synthesis of resveratrol in Vitis: Induction and cytological observation). Vitis 38:65–68

    Google Scholar 

  • Bugos RC, Chiang VL, Zhang XH, Campbell ER, Podila GK, Campbell WH (1995) RNA isolation from plant tissues recalcitrant to extraction in guanidine. Biotechniques 19:734–737

    CAS  PubMed  Google Scholar 

  • Chan MM, Mattiacci JA, Hwang HS, Shah A, Fong D (2000) Synergy between ethanol and grape polyphenols, quercetin, and resveratrol, in the inhibition of the inducible nitric oxide synthase pathway. Biochem Pharmacol 60:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Chen CK, Pace-Asciak CR (1996) Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen Pharmacol 27:363–366

    CAS  PubMed  Google Scholar 

  • Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  CAS  PubMed  Google Scholar 

  • Dercks W, Creasy LL (1989) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 34:189–202

    CAS  Google Scholar 

  • Doyle J, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Fettig S, Hess D (1999) Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgen Res 8:179–189

    Article  CAS  Google Scholar 

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    Article  CAS  Google Scholar 

  • Fitch M (1993) High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tissue Organ Cult 32:205–212

    CAS  Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194

    CAS  Google Scholar 

  • Gonsalves D (2002) Coat protein transgenic papaya: “acquired” immunity for controlling papaya ringspot virus. Curr Top Microbiol Immunol 266:73–83

    CAS  PubMed  Google Scholar 

  • Hain R, Bieseler B, Kindl H, Schroder G, Stocker R (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15:325–335

    CAS  PubMed  Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH et al (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  CAS  PubMed  Google Scholar 

  • Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551–562

    CAS  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  PubMed  Google Scholar 

  • Jeandet P, Breuil AC, Adrian M, Weston LA, Debord S, Meunier P, Maume G, Bessis R (1997) HPLC analysis of grapevine phytoalexins coupling photodiode array detection and fluorometry. Anal Chem 69:5172–5177

    Article  CAS  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  • Kuc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33:275–297

    Article  CAS  Google Scholar 

  • Langcake P (1981) Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, e-viniferin, a-viniferin and pterostilbene. Physiol Plant Pathol 18:213–226

    CAS  Google Scholar 

  • Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151–152

    CAS  PubMed  Google Scholar 

  • Leckband G, Lorz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1001–1012

    Article  Google Scholar 

  • Lorenzen P, Goepfert A, Schieber A, Bruckner H (1997) Evidence for peptide synthesis in the course of in vitro proteolysis. Nahrung 41:87–90

    CAS  PubMed  Google Scholar 

  • Nishijima W (1994) Papaya. In: Ploetz RC (ed) Compendium of tropical fruit disease. American Phytopathological Society, St. Paul, Minn.

  • Rupprich N, Kindl H (1978) Stilbene synthases and stilbenecarboxylate synthases, I Enzymatic synthesis of 3,5,4-trihydroxystilbene from p-coumaroyl coenzyme A and malonyl coenzyme A. Hoppe Seylers Z Physiol Chem 359:165–72

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van Den Elzen P, Cornelissen B (1993) Only specific tobacco (Nicotiana tabacum) chitinases and [beta]-1,3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hanbler G, Muhlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schonherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  CAS  PubMed  Google Scholar 

  • Thomzik JE (1993) Transformation in oilseed rape (Brassica napus L.). Biotechnol Agric For 23:170–182

    Google Scholar 

  • Thomzik JE, Stenzel K, Stoecker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of grapevine phytoalexin in transgenic tomato (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Waterhouse AL, Lamuela-Raventos RM (1994) The occurrence of piceid, a stilbene glucoside in grape berries. Phytochemistry 37:571–573

    Google Scholar 

Download references

Acknowledgements

We thank Dr. R. Hain from Bayer AG for providing the grapevine stilbene synthase construct; Dr. M. Fitch, ARS/USDA, for advice on papaya transformation and clonal propagation; and Dr. S. Schenck, Hawaii Agriculture Research Center, for providing fungal cultures and advice on pathogen studies. This work was partially supported by a cooperative agreement (No. CA 58-5320-3-460) between the U.S. Department of Agriculture, Agricultural Research Service, and the Hawaii Agriculture Research Center, and by a special USDA ARS grant to the College of Tropical Agriculture and Human Resources of the University of Hawaii for minor crop pest control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun J. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y.J., Agbayani, R., Jackson, M.C. et al. Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220, 241–250 (2004). https://doi.org/10.1007/s00425-004-1343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1343-1

Keywords

Navigation