Skip to main content
Log in

Development of long-term antimicrobial poly (ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly (ε-caprolactone)/silver exchanged montmorillonite (PCL/Ag–MMT) nanocomposites with a strong antibacterial activity and a slow release property were successfully prepared via solvent casting method, for active packaging use. The PCL/Ag–MMT nanocomposites containing different Ag–MMT loadings were characterized by several techniques. X-Ray Diffraction (XRD), UV–visible Spectroscopy and Transmission Electron Microscopy (TEM) results revealed that the MMT layers were exfoliated and spherical Ag nanoparticles were randomly distributed in the polymer matrix. Differential scanning calorimetry (DSC) showed that glass transition and melting temperatures of PCL/Ag–MMT nanocomposites were unaffected by clay contents compared to neat PCL. Nevertheless, the crystallization temperatures were increased due to the incorporation of effective nucleation agent Ag–MMT and its satisfactory dispersion into the PCL matrix. The positive effect of the Ag–MMT addition on the PCL barrier properties was confirmed by the reduction in the water permeability (WVP). Tensile results also displayed an improvement of mechanical properties for the PCL/Ag–MMT nanocomposites due to the insertion of clay particles into the PCL matrix. The potential of the silver ion release from the PCL/Ag–MMT films to a slightly acidified water medium was measured by atomic absorption spectroscopy. The results exhibited a gradual increase of the amount of silver ions released up to 30 days of immersion. The kinetic study of the ions release showed that the release’s mechanism is governed by the diffusion process. The apparent diffusivity coefficient values calculated using the diffusion model were in the range of 3.8 × 10−10 to 5.8 × 10−10 cm2/s. Furthermore, the PCL/Ag–MMT films exhibited a strong antibacterial efficiency against S. aureus, E. coli, salmonella and P. aeruginosa due to the presence of the long-lasting biocidal silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A Physicochem 374:1–8 (Eng aspects)

    Article  CAS  Google Scholar 

  2. Deverre E, Purchase D (2007) Effectiveness of domestic antibacterial products in decontaminating food contact surfaces. Food Microbiol 24:425–430

    Article  Google Scholar 

  3. Gilbert P, McBain AJ (2001) Biocide usage in the domestic setting and concern about antibacterial and antibiotic resistance. J Infect 43:85–91

    Article  CAS  Google Scholar 

  4. Liu CJ, Burghaus U, Besenbacher F, Wang ZL (2010) Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4:5517–5526

    Article  CAS  Google Scholar 

  5. Tricoli A, Pratsinis SE (2010) Dispersed nanoelectrode devices. Nat Nanotechnol 5:54–60

    Article  CAS  Google Scholar 

  6. Chen S, Parker G, Zou G, Su W, Zhang Q (2010) β-Cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4:6387–6394

    Article  CAS  Google Scholar 

  7. Zeng Q, Jiang X, Yu A, Lu G (2007) Growth mechanisms of silver nanoparticles: a molecular dynamics study. Nanotechnology. 18:035708

    Article  Google Scholar 

  8. Severin N, Kirstein S, Sokolov SM, Rabe JP (2009) Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett 9:457–461

    Article  CAS  Google Scholar 

  9. Signori AM, Santos KDO, Eising RB, Albuquerque L, Giacomelli FC, Domingos JB (2010) Formation of catalytic silver nanoparticles supported on branched polyethyleneimine derivatives. Langmuir 26:17772–17779

    Article  CAS  Google Scholar 

  10. Kvitek L, Panacek A, Soukopova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    Article  CAS  Google Scholar 

  11. Pal S, Kyung Y, Myong S (2007) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. J Appl Environ Microbiol. 73:1712–1720

    Article  CAS  Google Scholar 

  12. Kumar R, Munstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088

    Article  CAS  Google Scholar 

  13. Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833

    Article  CAS  Google Scholar 

  14. Levin CS, Hoffman C, Ali TA, Kelly AT, Morosan E, Nordlander P, Whitmire KH, Halas NJ (2009) Magnetic-plasmonic core-shell nanoparticles. ACS Nano 3:1379–1388

    Article  CAS  Google Scholar 

  15. Li L, Feng Y, Li Y, Zhao W, Shi J (2009) Fe3O4 core/layered double hydroxide shell nanocomposite: versatile magnetic matrix for anionic functional materials. Angew Chem Int Ed 48:5888–5892

    Article  CAS  Google Scholar 

  16. Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT, Ratner MA, Marks TJ (2010) In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem Mater 2:5154–5164

    Article  Google Scholar 

  17. Zheng M, Gu M, Jin Y, Jin G (2001) Optical properties of silver-dispersed PVP thin film. Mater Res Bull 36:853–859

    Article  CAS  Google Scholar 

  18. Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Synthesis and characterization of Ag/PVA nanocomposites by chemical reduction method. Mater Chem Phys 93:117–121

    Article  CAS  Google Scholar 

  19. Lu HW, Liu SH, Wang XL, Qian XF, Yin J, Zhu ZK (2003) Silver nanocrystals by hyperbranched polyurethane assisted photochemical reduction of Ag+. Mater Chem Phys 81:104–107

    Article  CAS  Google Scholar 

  20. Zhang Z, Zhang L, Wang S, Chen W, Lei Y (2001) A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer 42:8315–8318

    Article  CAS  Google Scholar 

  21. Dirix Y, Bastiaansen C, Caseri W, Smith P (1999) Preparation, structure and properties of uniaxially oriented polyethylene-silver nanocomposites. J Mater Sci 34:3859–3866

    Article  CAS  Google Scholar 

  22. Ghosh K, Maiti SN (1996) Mechanical properties of silver-powder-filled polypropylene composites. J Appl Polym Sci 3:323–331

    Article  Google Scholar 

  23. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. Biol Inorg Chem. 12:527–534

    Article  CAS  Google Scholar 

  24. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size dependent. Nat Nanotechnol 3:145–150

    Article  CAS  Google Scholar 

  25. Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  26. Zhao D, Zhou J, Liu N (2006) Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl Clay Sci 33:161–170

    Article  CAS  Google Scholar 

  27. Top A, Ulku S (2004) Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci 27:13–19

    Article  CAS  Google Scholar 

  28. Rivera-Garza M, Olguın MT, Garcia-Sosa I, Alcantara D, Rodriguez-Fuentes G (2000) Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 39:431–444

    Article  CAS  Google Scholar 

  29. Dizman B, Badger JC, Elasri MO, Mathias LJ (2007) Antibacterial fluoromicas: a novel delivery medium. Appl Clay Sci 38:57

    Article  CAS  Google Scholar 

  30. Li B, Yu S, Hwang JY, Shi S (2002) Antibacterial vermiculite nano-material. J Miner Mater Charact Eng 1:61–68

    Google Scholar 

  31. Carretero MI (2002) Clay minerals and their beneficial effects upon human health. A review. Appl Clay Sci. 21:155–163

    Article  CAS  Google Scholar 

  32. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  33. Papp S, Szücs A, Dekany I (2001) Preparation of Pd nanoparticles stabilized by polymers and layered silicate. Appl Clay Sci 19:155–172

    Article  CAS  Google Scholar 

  34. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2:117–132

    Article  Google Scholar 

  35. Khatiwala VK, Shekhar N, Aggarwal S, Mandal UK (2008) Biodegradation of poly(ε-caprolactone) (PCL) film by Alcaligenes faecalis. J Polym Environ 16:61–67

    Article  CAS  Google Scholar 

  36. Lei Y, Rai B, Ho KH, Teoh SH (2007) Bioactive polycaprolactone 20 % tricalcium phosphate composite scaffolds for bone engineering. Mater Sci Eng C 27:293–298

    Article  CAS  Google Scholar 

  37. Yahiaoui F, Benhacine F, Harrar-Ferfera H, Habi A, Hadj-Hamou AS, Grohens Y (2015) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72:235–254

    Article  CAS  Google Scholar 

  38. Chen B, Evans JRG (2006) Poly(ε-caprolactone)-clay nanocomposites: structure and mechanical properties. Macromolecules 39:747–754

    Article  CAS  Google Scholar 

  39. Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P (2002) Poly(ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43:4017–4023

    Article  CAS  Google Scholar 

  40. Ludueňa LN, Alvarez VA, Vazquez A (2007) Viscoelastic behavior of polycaprolactone/clay nanocomposites. Mater Sci Eng A 460:121–129

    Article  Google Scholar 

  41. Benhacine F, Hadj-Hamou AS, Habi A, Grohens Y (2015) Development of antimicrobial poly(ε-caprolactone)/poly(lactic acid)/silver exchanged montmorillonite nanoblend films with silver ion release property for active packaging use. Int Polym Proc 30:511–521

    Article  CAS  Google Scholar 

  42. Corre YM, Bruzaud S, Audic JL, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31:226–235

    Article  CAS  Google Scholar 

  43. Alemda A, Güngör N, Ece OI, Atici OJ (2005) The rheological properties and characterization of bentonite dispersions in the presence of non-ionic polymer PEG. J Mater Sci 40:171–177

    Article  Google Scholar 

  44. Gao Y, Choudhury NR, Dutta NK (2010) Systematic study of interfacial interactions between clays and an ionomer. J Appl Polym Sci 117:3395–3405

    Article  CAS  Google Scholar 

  45. Shameli K, Bin Ahmad M, Yunus WMZW, Ibrahim NA, Gharayebi Y, Sedaghat S (2010) Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. Int J Nanomed 5:1067–1077

    CAS  Google Scholar 

  46. Praus P, Turicová M, Karlíková M, Kvítek L, Dvorský R (2013) Nanocomposite of montmorillonite and silver nanoparticles: characterization and application in catalytic reduction of 4-nitrophenol. Mater Chem Phys 140:493–498

    Article  CAS  Google Scholar 

  47. Temgire MK, Joshi SS (2004) Optical and structural studies of silver nanoparticles. Radiat Phys Chem 71:1039–1044

    Article  CAS  Google Scholar 

  48. Ahmad MB, Shameli K, Darroudi M, Yunus W, Ibrahim A (2009) Synthesis and characterization of silver/clay/chitosan bionanocomposites by UV-irradiation method. Am J Appl Sci 6:2030–2035

    Article  Google Scholar 

  49. Aihara N, Torigoe K, Esumi K (1998) Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir 14:4945–4949

    Article  CAS  Google Scholar 

  50. Praus P, Turicová M, Karlíková M (2009) Preparation of silver-montmorillonite nanocomposites by reduction with formaldehyde and borohydride. J Braz Chem Soc 20:1351–1357

    Article  CAS  Google Scholar 

  51. Lin WJ, Lu CH (2002) Characterization and permeation of microporous poly(ε-caprolactone) films. J Membr Sci 198:109–118

    Article  CAS  Google Scholar 

  52. Jiang S, Ji X, An L, Jiang B (2001) Crystallization behavior of PCL in hybrid confined environment. Polymer 42:3901–3907

    Article  CAS  Google Scholar 

  53. Wu T, Xie T, Yang G (2009) Preparation and characterization of poly (ε-caprolactone)/Na+-MMT nanocomposites. Appl Clay Sci 45:105–110

    Article  CAS  Google Scholar 

  54. Yingwei D, Iannace S, Di Maio E, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci B Polym Phys 41:670–678

    Article  Google Scholar 

  55. Pitt CG, Chaslow FI, Hibionada YM, Klimas DM, Scindler A (1981) Aliphatic polyesters. I. The degradation of poly(ε-caprolactone) in vivo. J Appl Polym Sci 26:3779–3787

    Article  CAS  Google Scholar 

  56. Park HM, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37:9076–9082

    Article  CAS  Google Scholar 

  57. Rhim JW, Lee JH, Kwak HS (2004) Mechanical and barrier properties of soy protein and clay mineral composite films. Food Sci Biotechnol 14:112–116

    Google Scholar 

  58. Rhim W, Hong SI, Park HM, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  59. Fortunati E, Peltzer M, Armentano I, Jiménez A, Kenny JM (2013) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 118:117–124

    Article  CAS  Google Scholar 

  60. Fernandez A, Soriano E, Hernández-Muñoz P, Gavara R (2010) Migration of antimicrobial silver from composites of polylactide with silver zeolites. J Food Sci 75:186–193

    Article  Google Scholar 

  61. Hoskins JS, Karanfil T, Serkiz SM (2002) Removal and sequestration of iodide using silver-impregnated activated carbon. Environ Sci Technol 36:784–789

    Article  CAS  Google Scholar 

  62. Damm C, Munstedt H, Rosch A (2008) The antimicrobial efficacy of polyamide6/silver nano and microcomposites. Mater Chem Phys 108:61–66

    Article  CAS  Google Scholar 

  63. Kwakye-Awuah B, Williams C, Kenward MA, Redecka I (2008) Antimicrobial action and efficiency of silver-loaded zeolite X. J Appl Microbiol 104:1516–1524

    Article  CAS  Google Scholar 

  64. Radheshkumar C, Münstedt H (2006) Antimicrobial polymers from polypropylene/silver composites-Ag+ release measured by anode stripping voltammetry. React Funct Polym 66:780–788

    Article  CAS  Google Scholar 

  65. Jokar M, AbdulRahman R (2014) Study of silver ion migration from melt blended and layered deposited silver polyethylene nanocomposite into food simulants and apple juice. Food Addit Contam Part A 31:734–42

  66. Zapata PA, Tamayo L, Páez M, Cerda E, Azócar I, Rabagliati FM (2011) Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic “in situ” polymerization: synthesis, characterization, and antimicrobial behavior. Eur Polym J 47:1541–1549

    Article  CAS  Google Scholar 

  67. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  68. Russel AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  Google Scholar 

  69. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the microbiology laboratory of LABORATOIRIES MERINAL SARL in Algeria for provision of the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia siham Hadj-Hamou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhacine, F., Hadj-Hamou, A.s. & Habi, A. Development of long-term antimicrobial poly (ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym. Bull. 73, 1207–1227 (2016). https://doi.org/10.1007/s00289-015-1543-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1543-9

Keywords

Navigation