Skip to main content
Log in

ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 27 April 2013

Abstract

Normally, gene targeting by homologous recombination occurs rarely during a transformation process since non-homologous recombination is predominant in filamentous fungi. In our previous researches, the average gene replacement frequency (GRF) in Monascus ruber M7 was as low as 15 %. To develop a highly efficient gene targeting system for M. ruber M7, two M. ruber M7 null mutants of ku70 (MrΔku70) and ku80 (MrΔku80) were constructed which had no apparent defects in the development including vegetative growth, colony phenotype, microscopic morphology and spore yield compared with M. ruber M7. In addition, the production of some significant secondary metabolites such as pigments and citrinin had no differences between the two disruptants and the wild-type strain. Further results revealed that the GRFs of triA (encoding a putative acetyltransferase) were 42.2 % and 61.5 % in the MrΔku70 and MrΔku80 strains, respectively, while it was only about 20 % in M. ruber M7. Furthermore, GRFs of these two disruptants at other loci (the pigE, fmdS genes in MrΔku70 and the ku70 gene in MrΔku80) were investigated, and the results indicated that GRFs in the MrΔku70 strain and the MrΔku80 strain were doubled and tripled compared with that in M. ruber M7, respectively. Therefore, the ku70 and ku80 null mutants of M. ruber M7, especially the ku80-deleted strain, will be excellent hosts for efficient gene targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Aniya Y, Ohtani II, Higa T, Miyagi C, Gibo H, Shimabukuro M, Nakanishi H, Taira J (2000) Dimerumic acid as an antioxidant of the mold, Monascus anka. Free Radical Bio Med 28(6):999–1004. doi:10.1016/s0891-5849(00)00188-x

    Article  CAS  Google Scholar 

  • Asch DK, Kinsey JA (1990) Relationship of vector insert size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene. Mol Gen Genet 221(1):37–43

    Article  CAS  Google Scholar 

  • Aylon Y, Kupiec M (2004) DSB repair: the yeast paradigm. DNA Repair 3(8–9):797–815. doi:10.1016/j.dnarep.2004.04.013

    Article  CAS  Google Scholar 

  • Calsou P, Frit P, Humbert O, Muller C, Chen DJ, Salles B (1999) The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA. J Biol Chem 274(12):7848–7856. doi:10.1074/jbc.274.12.7848

    Article  CAS  Google Scholar 

  • Carvalho NDSP, Arentshorst M, Kwon MJ, Meyer V, Ram AFJ (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87(4):1463–1473

    Article  CAS  Google Scholar 

  • Cary RB, Peterson SR, Wang J (1997) DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci USA 94(9):4267–4272. doi:10.1073/pnas.94.9.4267

    Article  CAS  Google Scholar 

  • Chang P-K, Scharfenstein LL, Wei Q, Bhatnagar D (2010) Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. J Microbiol Meth 81(3):240–246. doi:10.1016/j.mimet.2010.03.010

    Article  CAS  Google Scholar 

  • Chen F, Hu X (2005) Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol 103(3):331–337. doi:10.1016/j.ijfoodmicro.2005.03.002

    Article  CAS  Google Scholar 

  • Chen Y-P, Tseng C-P, Liaw L-L, Wang C-L, Chen IC, Wu W-J, Wu M-D, Yuan G-F (2008) Cloning and characterization of Monacolin K biosynthetic gene cluster from Monascus pilosus. J Agr Food Chem 56(14):5639–5646. doi:10.1021/jf800595k

    Article  CAS  Google Scholar 

  • Chen Y-P, Yuan G-F, Hsieh S-Y, Lin Y-S, Wang W-Y, Liaw L-L, Tseng C-P (2009) Identification of the mokH gene encoding transcription factor for the upregulation of Monacolin K biosynthesis in Monascus pilosus. J Agr Food Chem 58(1):287–293. doi:10.1021/jf903139x

    Article  Google Scholar 

  • Chen W, Xie T, Shao Y, Chen F (2012a) Genomic characteristics comparisons of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino acid composition. Gene 497(1):116–124. doi:10.1016/j.gene.2012.01.016

    Article  CAS  Google Scholar 

  • Chen W, Xie T, Shao Y, Chen F (2012b) Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi. PLoS One 7(11):e49679. doi:10.1371/journal.pone.0049679

    Article  CAS  Google Scholar 

  • Choi YE, Shim WB (2008) Enhanced homologous recombination in Fusarium verticillioides by disruption of FvKU70, a gene required for a non-homologous end joining mechanism. Plant Pathol J 24(1):1–7

    Article  CAS  Google Scholar 

  • Choquer M, Robin G, Le Pêcheur P, Giraud C, Levis C, Viaud M (2008) Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. FEMS Microbiol Lett 289(2):225–232. doi:10.1111/j.1574-6968.2008.01388.x

    Article  CAS  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103(27):10352–10357. doi:10.1073/pnas.0601456103

    Article  CAS  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23(10):394–398. doi:10.1016/s0968-0004(98)01284-5

    Article  CAS  Google Scholar 

  • da Silva Ferreira ME, Kress MRVZ, Savoldi M, Goldman MHS, Härtl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuB KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5(1):207–211. doi:10.1128/ec.5.1.207-211.2006

    Article  Google Scholar 

  • Daley JM, Palmbos PL, Wu DL, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451

    Article  CAS  Google Scholar 

  • Doherty AJ, Jackson SP (2001) DNA repair: how Ku makes ends meet. Curr Biol 11(22):R920–R924. doi:10.1016/s0960-9822(01)00555-3

    Article  CAS  Google Scholar 

  • Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M, Kasuga T, Tian C, Baştürkmen M, Altamirano L, Xu J (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96

    Article  CAS  Google Scholar 

  • Dyck EV, Stasiak AZ, Stasiak A, West SC (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398(6729):728–731

    Article  Google Scholar 

  • Fang Z, Zhang Y, Cai M, Zhang J, Zhang Y, Zhou X (2012) Improved gene targeting frequency in marine-derived filamentous fungus Aspergillus glaucus by disrupting ligD. J Appl Genet 53(3):355–362. doi:10.1007/s13353-012-0095-z

    Article  CAS  Google Scholar 

  • Feng J, Li W, Hwang S-F, Gossen BD, Strelkov SE (2012a) Enhanced gene replacement frequency in KU70 disruption strain of Stagonospora nodorum. Microbiol Res 167(3):173–178. doi:10.1016/j.micres.2011.05.004

    Article  CAS  Google Scholar 

  • Feng Y, Shao Y, Chen F (2012b) Monascus pigments. Appl Microbiol Biotechnol 96(6):1421–1440. doi:10.1007/s00253-012-4504-3

    Article  CAS  Google Scholar 

  • Goins CL, Gerik KJ, Lodge JK (2006) Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genet Biol 43(8):531–544. doi:10.1016/j.fgb.2006.02.007

    Article  CAS  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72(1):131–142

    Article  CAS  Google Scholar 

  • Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139(2):146–151. doi:10.1016/j.jbiotec.2008.10.007

    Google Scholar 

  • Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Δku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45(1):35–44. doi:10.1016/j.fgb.2007.04.008

    Article  CAS  Google Scholar 

  • Haber JE (2006) Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair 5(9–10):998–1009

    Article  CAS  Google Scholar 

  • Hamid MI, Zeng F, Cheng J, Jiang D, Fu Y (2013) Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans. Fungal Genet Biol doi:http://dx.doi.org/10.1016/j.fgb.2012.12.002

  • Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U (2010) Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 85(4):1081–1094. doi:10.1007/s00253-009-2168-4

    Article  CAS  Google Scholar 

  • Honda S, Selker EU (2009) Tools for fungal proteomics: multifunctional Neurospora vectors for gene replacement, protein expression and protein purification. Genetics 182(1):11–23. doi:10.1534/genetics.108.098707

    Article  CAS  Google Scholar 

  • Hood E, Gelvin S, Melchers L, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218. doi:10.1007/bf01977351

    Article  CAS  Google Scholar 

  • Hsu W-H, Pan T-M (2012) Monascus purpureus-fermented products and oral cancer: a review. Appl Microbiol Biotechnol 93(5):1831–1842. doi:10.1007/s00253-012-3891-9

    Article  CAS  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103(40):14871–14876. doi:10.1073/pnas.0604477103

    Article  CAS  Google Scholar 

  • Iwabuchi K, Hashimoto M, Matsui T, Kurihara T, Shimizu H, Adachi N, Ishiai M, Yamamoto K, Tauchi H, Takata M, Koyama H, Date T (2006) 53BP1 contributes to survival of cells irradiated with X-ray during G1 without Ku70 or Artemis. Genes Cells 11(8):935–948. doi:10.1111/j.1365-2443.2006.00989.x

    Article  CAS  Google Scholar 

  • Kanaar R, Hoeijmakers JHJ, van Gent DC (1998) Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol 8(12):483–489. doi:10.1016/s0962-8924(98)01383-x

    Article  CAS  Google Scholar 

  • Kito H, Fujikawa T, Moriwaki A, Tomono A, Izawa M, Kamakura T, Ohashi M, Sato H, Abe K, Nishimura M (2008) MgLig4, a homolog of Neurospora crassa Mus-53 (DNA ligase IV), is involved in, but not essential for, non-homologous end-joining events in Magnaporthe grisea. Fungal Genet Biol 45(12):1543–1551. doi:10.1016/j.fgb.2008.09.005

    Article  CAS  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5(1):212–215

    Article  CAS  Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86(1):51–62. doi:10.1007/s00253-009-2416-7

    Article  Google Scholar 

  • Lai Y, Wang L, Qing L, Chen F (2011) Effects of cyclic AMP on development and secondary metabolites of Monascus ruber M-7. Lett Appl Microbiol 52(4):420–426. doi:10.1111/j.1472-765X.2011.03022.x

    Article  CAS  Google Scholar 

  • Larrondo LF, Colot HV, Baker CL, Loros JJ, Dunlap JC (2009) Fungal functional genomics: tunable knockout-knock-in expression and tagging strategies. Eukaryot Cell 8(5):800–804. doi:10.1128/ec.00072-09

    Article  CAS  Google Scholar 

  • Lee C-L, Pan T-M (2011) Red mold fermented products and Alzheimer's disease: a review. Appl Microbiol Biotechnol 91(3):461–469. doi:10.1007/s00253-011-3413-1

    Article  CAS  Google Scholar 

  • Lee B-H, Pan T-M (2012a) Benefit of Monascus-fermented products for hypertension prevention: a review. Appl Microbiol Biotechnol 94(5):1151–1161. doi:10.1007/s00253-012-4076-2

    Article  CAS  Google Scholar 

  • Lee C-L, Pan T-M (2012b) Development of Monascus fermentation technology for high hypolipidemic effect. Appl Microbiol Biotechnol 94(6):1449–1459. doi:10.1007/s00253-012-4083-3

    Article  CAS  Google Scholar 

  • Li L, Shao Y, Li Q, Yang S, Chen F (2010a) Identification of Mga1, a G-protein α-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7. FEMS Microbiol Lett 308(2):108–114. doi:10.1111/j.1574-6968.2010.01992.x

    CAS  Google Scholar 

  • Li ZH, Du CM, Zhong YH, Wang TH (2010b) Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 87(3):1065–1076. doi:10.1007/s00253-010-2566-7

    Article  CAS  Google Scholar 

  • Lin YL, Wang TH, Lee MH, Su NW (2008) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77(5):965–973. doi:10.1007/s00253-007-1256-6

    Article  CAS  Google Scholar 

  • Maruyama J-I, Kitamoto K (2008) Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (ΔligD) in Aspergillus oryzae. Biotechnol Lett 30(10):1811–1817. doi:10.1007/s10529-008-9763-9

    Article  CAS  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv 26(2):177–185. doi:10.1016/j.biotechadv.2007.12.001

    Article  CAS  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews A-C, Kooistra R, van den Hondel CAMJJ, Ram AFJ (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128(4):770–775. doi:10.1016/j.jbiotec.2006.12.021

    Article  CAS  Google Scholar 

  • Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K (2008) A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genet Biol 45(6):878–889. doi:10.1016/j.fgb.2007.12.010

    Article  CAS  Google Scholar 

  • Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 711(1–2):61–72. doi:10.1016/j.mrfmmm.2011.02.005

    CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172(3):1557–1566. doi:10.1534/genetics.105.052563

    Article  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101(33):12248–12253. doi:10.1073/pnas.0402780101

    Article  CAS  Google Scholar 

  • Paillard S, Strauss F (1991) Analysis of the mechanism of interaction of simian Ku protein with DNA. Nucleic Acids Res 19(20):5619–5624. doi:10.1093/nar/19.20.5619

    Article  CAS  Google Scholar 

  • Pastink A, Eeken JCJ, Lohman PHM (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50. doi:10.1016/s0027-5107(01)00167-1

    Google Scholar 

  • Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol 126(1–2):20–23. doi:10.1016/j.ijfoodmicro.2008.04.019

    Article  CAS  Google Scholar 

  • Pöggeler S, Kück U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378(0):1–10. doi:10.1016/j.gene.2006.03.020

    Article  Google Scholar 

  • Ramsden DA, Gellert M (1998) Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J 17(2):609–614

    Article  CAS  Google Scholar 

  • Shao YC, Ding YD, Zhao Y, Yang S, Xie BJ, Chen FS (2009) Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber. World J Microb Biot 25(6):989–995. doi:10.1007/s11274-009-9977-6

    Article  CAS  Google Scholar 

  • Shi YC, Pan TM (2011) Beneficial effects of Monascus purpureus NTU 568-fermented products: a review. Appl Microbiol Biotechnol 90(4):1207–1217. doi:10.1007/s00253-011-3202-x

    Article  CAS  Google Scholar 

  • Shi Y-C, Pan T-M (2012) Red mold, diabetes, and oxidative stress: a review. Appl Microbiol Biotechnol 94(1):47–55. doi:10.1007/s00253-012-3957-8

    Article  CAS  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147

    Article  CAS  Google Scholar 

  • Su Y-C, Wang J-J, Lin T-T, Pan T-M (2003) Production of the secondary metabolites ϒ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biot 30(1):41–46

    CAS  Google Scholar 

  • Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, Osmani SA, Oakley BR (2007) Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1(6):3111–3120

    Article  Google Scholar 

  • Tachibana A (2004) Genetic and physiological regulation of non-homologous end-joining in mammalian cells. Adv Biophys 38:21–44

    Article  CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006a) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genom 275:460–470. doi:10.1007/s00438-006-0104-1

    Article  CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006b) Identification and analysis of Ku70 and Ku80 homologs in the koji molds Aspergillus sojae and Aspergillus oryzae. Biosci Biotechnol Biochem 70(1):135–143

    Article  CAS  Google Scholar 

  • Takahashi T, Jin FJ, Sunagawa M, Machida M, Koyama Y (2008) Generation of large chromosomal deletions in koji molds Aspergillus oryzae and Aspergillus sojae via a loop-out recombination. Appl Environ Microb 74(24):7684–7693. doi:10.1128/aem.00692-08

    Article  CAS  Google Scholar 

  • Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res-Rev Mut 751(2):158–246. doi:10.1016/j.mrrev.2012.06.002

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  Google Scholar 

  • Verbeke J, Beopoulos A, Nicaud J-M (2012) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett:1–6 doi:10.1007/s10529-012-1107-0

  • Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun M-H (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45(1):68–75. doi:10.1016/j.fgb.2007.06.006

    Article  CAS  Google Scholar 

  • Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614, http://www.nature.com/nature/journal/v412/n6847/suppinfo/412607a0_S1.html

    Article  CAS  Google Scholar 

  • Wang H, Perrault AR, Takeda Y, Qin W, Iliakis G (2003) Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 31(18):5377–5388

    Article  CAS  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16(1):31–44. doi:10.1038/sj.cr.7310006

    Article  CAS  Google Scholar 

  • Weterings E, van Gent DC (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair 3(11):1425–1435. doi:10.1016/j.dnarep.2004.06.003

    Article  CAS  Google Scholar 

  • Yang Y, Li L, Li X, Shao Y, Chen F (2012) mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7. Fungal Biol 116(2):225–233. doi:10.1016/j.funbio.2011.11.005

    Article  CAS  Google Scholar 

  • Yasuda M, Tachibana S, Kuba-Miyara M (2012) Biochemical aspects of red koji and tofuyo prepared using Monascus fungi. Appl Microbiol Biotechnol 96(1):49–60. doi:10.1007/s00253-012-4300-0

    Article  CAS  Google Scholar 

  • Yu Y, Du J, Wang G, Ji J (2003) Studies on the freeze-thaw method of transforming recombinant plasmid DNA into Agrobacterium tumefaciens. J Jilin Agricultural University 25:257–259 (in Chinese)

    Google Scholar 

  • Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41(11):973–981. doi:10.1016/j.fgb.2004.08.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Daohong Jiang from Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University for providing plasmids pKN1 and pSKH. This work was financially supported by the programs of National Natural Science Foundation of China (No.31171649; No.31271834), New Century of Chinese Ministry of Education (NCET-05-0667) and National High Technology Research and Development Program of China (2006AA10Z1A3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanchun Shao or Fusheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Liu, Q., Shao, Y. et al. ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 97, 4965–4976 (2013). https://doi.org/10.1007/s00253-013-4851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4851-8

Keywords

Navigation