Skip to main content

Advertisement

Log in

Monascus pigments

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Monascus pigments (MPs) as natural food colorants have been widely utilized in food industries in the world, especially in China and Japan. Moreover, MPs possess a range of biological activities, such as anti-mutagenic and anticancer properties, antimicrobial activities, potential anti-obesity activities, and so on. So, in the past two decades, more and more attention has been paid to MPs. Up to now, more than 50 MPs have been identified and studied. However, there have been some reviews about red fermented rice and the secondary metabolites produced by Monascus, but no monograph or review of MPs has been published. This review covers the categories and structures, biosynthetic pathway, production, properties, detection methods, functions, and molecular biology of MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn J, Jung J, Hyung W, Haam S, Shin C (2006) Enhancement of Monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol Prog 22:338–340

    CAS  Google Scholar 

  • Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H (2005a) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2:1305–1309

    CAS  Google Scholar 

  • Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005b) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Agric Food Chem 53:562–565

    CAS  Google Scholar 

  • Babitha S, Soccol CR, Pandey A (2006) Jackfruit seed—a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol 44:465–471

    CAS  Google Scholar 

  • Babitha S, Soccol CR, Pandey A (2007) Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresour Technol 98:1554–1560

    CAS  Google Scholar 

  • Babitha S, Carvahlo JC, Soccol CR, Pandey A (2008) Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J Microbiol Biotechnol 24:2671–2675

    CAS  Google Scholar 

  • Bau YS, Wong HC (1979) Zinc effects on growth, pigmentation and antibacterial activity of Monascus purpureus. Physiol Plant 46:63–67

    CAS  Google Scholar 

  • Birch AJ, Cassera A, Firron P, Holker JSE (1962) Studies in relation to biosynthesis part XXX*, rotiorin, monascin, and rubropunctatin. J Chem Soc 3583–3586

  • Blanc PJ, Loret MO, Santerre AL, Pareilleux A (1994) Pigments of Monascus. J Food Sci 59:862–865

    CAS  Google Scholar 

  • Blanc PJ, Loret MO, Goma G (1995) Production of citrinin by various species of Monascus. Biotechnol Lett 17:291–294

    CAS  Google Scholar 

  • Calvo C, Salvador A (2002) Comparative study of the colorants Monascus and cochineal used in the preparation of gels made with various gelling agents. Food Hydrocoll 16:523–526

    CAS  Google Scholar 

  • Campoy S, Rumbero A, Martín JF, Liras P (2006) Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol 70:488–496

    CAS  Google Scholar 

  • Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1372

    CAS  Google Scholar 

  • Carels M, Shepherd D (1979) The effect of changes in pH on phosphate and potassium uptake by Monascus rubiginosus ATCC 16367 in submerged shaken culture. Can J Microbiol 25:1484–1488

    CAS  Google Scholar 

  • Chen FS, Hu XQ (2005) Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol 103:331–337

    CAS  Google Scholar 

  • Chen MH, Johns MR (1993) Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol 40:132–138

    CAS  Google Scholar 

  • Chen MH, Johns MR (1994) Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb Technol 16:584–590

    Google Scholar 

  • Chen FC, Manchard PS, Whalley WB (1969) The structure of monascin. J Chem Soc D 130–131

  • Chen FC, Manchand PS, Whalley WB (1971) The chemistry of fungi. LXIV. The structure of monascin: the relative stereochemistry of the azaphilones. J Chem Soc Perkin 1:3577–3579

    Google Scholar 

  • Chen Y, Tseng C, Liaw L, Wang C, Chen I, Wu W, Wu M, Yuan G (2008) Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem 56:5639–5646

    CAS  Google Scholar 

  • Cheng MJ, Wu MD, Chen IS, Yuan GF (2010) A new sesquiterpene isolated from the extracts of the fungus Monascus Pilosus-fermented rice. Nat Prod Res 24:750–758

    CAS  Google Scholar 

  • Cheng MJ, Wu MD, Su YS, Yuan GF, Chen YL, Chen IS (2012a) Secondary metabolites from the fungus Monascus kaoliang and inhibition of nitric oxide production in lipopolysaccharide-activated macrophages. Phytochem Lett 5:262–266

    CAS  Google Scholar 

  • Cheng MJ, Wu MD, Yuan GF, Su YS, Yanai H (2012b) Secondary metabolites produced by the fungus Monascus pilosus and their anti-inflammatory activity. Phytochem Lett 5:567–571. doi:10.1016/j.phytol.2012.05.015

    CAS  Google Scholar 

  • Choe D, Lee J, Woo S, Shin CS (2012) Evaluation of the amine derivatives of Monascus pigment with anti-obesity activities. Food Chem 134:315–323

    CAS  Google Scholar 

  • de Carvalho JC, Pandey A, Oishi BO, Brand D, Rodriguez-Léon JA, Soccol CR (2006) Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation. Biochem Eng J 29:262–269

    Google Scholar 

  • Ding G, Zhao JX, Zhang W, Yao JC, Xu H, Ding YZ, Yang GH, Guo XG, Wei P (2008) National standard GB4926-2008: food additive-red kojic rice (powder). AQSIQ 1–5

  • Domínguez-Espinosa RM, Webb C (2003) Submerged fermentation in wheat substrates for production of Monascus pigments. World J Microbiol Biotechnol 19:329–336

    Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Chidambara Murthy KN, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Tecnol 16:389–406

    Google Scholar 

  • Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32:852–854

    CAS  Google Scholar 

  • Evans PJ, Wang HY (1984) Pigment production from immobilized Monascus sp. utilizing polymeric resin adsorption. Appl Environ Microbiol 47:1323–1326

    CAS  Google Scholar 

  • Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1102/1110

    CAS  Google Scholar 

  • Fielding BC, Holker JSE, Jones DF, Powell ADG, Richmond KW, Roberton A, Whalley WB (1961) The chemistry of fungi. Part XXXIX. The structure of monascin. J Chem Soc 4579–4589

  • Fu JQ, Bai J (1977) Red fermented rice and its operative technology. China Light Ind Press pp 28–30

  • Gheith O, Sheashaa H, Abdelsalam M, Shoeir Z, Sobh M (2008) Efficacy and safety of Monascus purpureus Went rice in subjects with secondary hyperlipidemia. Clin Exp Nephrol 12:189–194

    Google Scholar 

  • Gong H, Chen H, Gao Q (2002) The research progress on Hongqu and its pigment. J Wuhan Polytech Univ 22–24

  • Hadfield JR, Holker JSE, Stanway DN (1967) The biosynthesis of fungal metabolites. Part II. The β-oxo-lactone equivalents in rubropunctatin and monascorubrin. J Chem Soc 751–755

  • Hajjaj H, Klaébé A, Loret MO, Tzedakis T, Goma G, Blanc PJ (1997) Production and identification of N-glucosylrubropunctamine and n-glucosylmonascorubramine from Monascus ruber and occurrence of electron donor-acceptor complexes in these red pigments. Appl Environ Microbiol 63:2671–2678

    CAS  Google Scholar 

  • Hajjaj H, Blanc PJ, Groussac E, Goma G, Uribelarrea JL, Loubiere P (1999) Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus ruber. Biotechnol Bioeng 64:497–501

    CAS  Google Scholar 

  • Hajjaj H, Blanc P, Groussac E, Uribelarrea JL, Goma G, Loubiere P (2000a) Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Microb Technol 27:619–625

    CAS  Google Scholar 

  • Hajjaj H, Klaébé A, Goma G, Blanc PJ, Barbier E, Franceois J (2000b) Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66:1120–1125

    CAS  Google Scholar 

  • Hajjaj H, François JM, Goma G, Blanc PJ (2012) Effect of amino acids on red pigments and citrinin production in Monascus ruber. J Food Sci 77:156–159

    Google Scholar 

  • Hamdi M, Blanc PJ, Goma G (1996) Effect of aeration conditions on the production of red pigments by Monascus purpureus growth on prickly pear juice. Process Biochem 31:543–547

    CAS  Google Scholar 

  • Hamdi M, Blanc PJ, Loret MO, Goma G (1997) A new process for red pigment production by submerged culture of Monascus purpureus. Bioprocess Eng 17:75–79

    CAS  Google Scholar 

  • Han O, Mudgett RE (1992) Effects of oxygen and carbon dioxide partial pressures on Monascus growth and pigment production in solid-state fermentations. Biotechnol Prog 8:5–10

    CAS  Google Scholar 

  • Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A (1959) The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. J Chem Soc 3598–3610

  • Ho BY, Wu YM, Hsu YW, Hsu LC, Kuo YH, Chang KJ, Pan TM (2010) Effects of Monascus-fermented rice extract on malignant cell-associated neovascularization and intravasation determined using the chicken embryo chorioallantoic membrane model. Integr Cancer Ther 9:204–212

    CAS  Google Scholar 

  • Holker JSE, Staunton J, Whalley WB (1964) The biosynthesis of fungal metabolites. Part I. Two different pathways to β-ketide chains in rotiorin J Chem Soc 16–22

  • Hong MY, Seeram NP, Zhang Y, Heber D (2008) Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J Nutr Biochem 19:448–458

    CAS  Google Scholar 

  • Hong S, Lee I, Kim S, Imm J-Y (2012) Improved functionality of soft soybean curd containing Monascus fermented soybean ethanol extract. Food Sci Biotechnol 21:701–707

    CAS  Google Scholar 

  • Hossain CF, Okuyama E, Yamazaki M (1996) A new series of coumarin derivatives having monoamine oxidase inhibitory activity from Monascus anka. Chem Pharm Bull 44:1535–1539

    CAS  Google Scholar 

  • Hsu WH, Pan TM (2012) Monascus purpureus-fermented products and oral cancer: a review. Appl Microbiol Biotechnol 93:1831–1842

    CAS  Google Scholar 

  • Hsu YW, Hsu LC, Liang YH, Kuo YH, Pan TM (2010) Monaphilones A–C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J Agric Food Chem 58:8211–8216

    CAS  Google Scholar 

  • Hsu WH, Lee BH, Pan TM (2011a) Effects of red mold dioscorea on oral carcinogenesis in DMBA-induced hamster animal model. Food Chem Toxicol 49:1292–1297

    CAS  Google Scholar 

  • Hsu YW, Hsu LC, Liang YH, Kuo YH, Pan TM (2011b) New bioactive orange pigments with yellow fluorescence from Monascus-fermented dioscorea. J Agric Food Chem 59:4512–4518

    CAS  Google Scholar 

  • Hsu WH, Lee BH, Liao TH, Hsu YW, Pan TM (2012) Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes. Food Chem Toxicol 50:1178–1186

    CAS  Google Scholar 

  • Hu ZQ, Zhang XH, Wu ZQ, Qi HS, Wang ZL (2012) Perstraction of intracellular pigments by submerged cultivation of Monascus in nonionic surfactant micelle aqueous solution. Appl Microbiol Biotechnol 94:81–89

    CAS  Google Scholar 

  • Huang L, Cheng X, Wei SJ, Tu XR, Li KT (2011) Research on the stability for Monascus pigment produced by Monascus purpureus JR. China Condiment 36:93–96

    Google Scholar 

  • Inoue K, Ito Y, Hattori Y, Tsutsumiuchi K, Ito S, Hino T, Oka H (2010) Efficient purification of xanthomonasin A and B from Monascus yellow colorant by high-speed countercurrent chromatography. Jpn J Food Chem Saf 17:185–191

    CAS  Google Scholar 

  • Ito S, Saitou T, Imahori H, Uehara H, Hasegawa N (2010) Fabrication of dye-sensitized solar cells using natural dye for food pigment: Monascus yellow. Energy Environ Sci 3:905–909

    CAS  Google Scholar 

  • Izawa S, Harada N, Watanabe T, Kotokawa N, Yamamoto A, Hayatsu H, Arimoto-Kobayashi S (1997) Inhibitory effects of food-coloring agents derived from Monascus on the mutagenicity of heterocyclic amines. J Agric Food Chem 45:3980–3984

    CAS  Google Scholar 

  • Jeun J, Jung H, Kim J, Kim Y, Youn S, Shin C (2008) Effect of the Monascus pigment threonine derivative on regulation of the cholesterol level in mice. Food Chem 107:1078–1085

    CAS  Google Scholar 

  • Jia XQ, Xu ZN, Zhou LP, Sung CK (2010) Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metab Eng 12:1–7

    CAS  Google Scholar 

  • Johns MR, Stuart DM (1991) Production of pigments by Monascus purpureus in solid culture. J Ind Microbiol 8:23–28

    CAS  Google Scholar 

  • Johnson GT, Mchan F (1975) Some effects of zinc on the utilization of carbon sources by Monascus purpureus. Mycologia 67:806–816

    CAS  Google Scholar 

  • Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

    CAS  Google Scholar 

  • Joshi VK, Attri D, Bala A, Bhushan S (2003) Microbial pigments. Indian J Biotechnol 2:362–369

    CAS  Google Scholar 

  • Jou PC, Ho BY, Hsu YW, Pan TM (2010) The effect of Monascus secondary polyketide metabolites, monascin and ankaflavin, on adipogenesis and lipolysis activity in 3 T3-L1. J Agric Food Chem 58:12703–12709

    CAS  Google Scholar 

  • Ju JY, Kim DY, Suh JH, Shin CS (1999) Optimization of Monascus red pigment fermentation by regulating chitinase activity level in fermentor. Bioprocess Eng 21:25–29

    CAS  Google Scholar 

  • Jůlová P, Martínkková L, Lozinski J, Machek F (1994) Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme Microb Technol 16:996–1001

    Google Scholar 

  • Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306

    CAS  Google Scholar 

  • Jung H, Choe D, Nam KY, Cho KH, Shin CS (2011) Degradation patterns and stability predictions of the original reds and amino acid derivatives of Monascus pigments. Eur Food Res Technol 232:621–629

    CAS  Google Scholar 

  • Jůzlová P, Martínková L, Křen V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol Biotechnol 16:163–170

    Google Scholar 

  • Kim HJ, Kim JH, Oh HJ, Shin CS (2002) Morphology control of Monascus cells and scale-up of pigment fermentation. Process Biochem 38:649–655

    CAS  Google Scholar 

  • Kim C, Jung H, Kim JH, Shin CS (2006a) Effect of Monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. Colloid Surf B 47:153–159

    CAS  Google Scholar 

  • Kim C, Jung H, Kim YO, Shin CS (2006b) Antimicrobial activities of amino acid derivatives of Monascus pigments. FEMS Microbiol Lett 264:117–124

    CAS  Google Scholar 

  • Kim JH, Kim HJ, Kim C, Jung H, Kim YO, Ju JY, Shin CS (2007a) Development of lipase inhibitors from various derivatives of Monascus pigment produced by Monascus fermentation. Food Chem 101:357–364

    CAS  Google Scholar 

  • Kim JH, Kim HJ, Park HW, Youn SH, Choi D-Y, Shin CS (2007b) Development of inhibitors against lipase and α-glucosidase from derivatives of Monascus pigment. FEMS Microbiol Lett 276:93–98

    CAS  Google Scholar 

  • Kim JH, Kim YO, Jeun J, Choi DY, Shin CS (2010) l-Trp and l-Leu-OEt derivatives of the Monascus pigment exert high anti-obesity effects on mice. Biosci Biotechnol Biochem 74:304–308

    CAS  Google Scholar 

  • Knecht A, Humpf HU (2006) Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol Nutr Food Res 50:406–412

    CAS  Google Scholar 

  • Knecht A, Cramer B, Humpf HU (2006) New Monascus metabolites: structure elucidation and toxicological properties studied with immortalized human kidney epithelial cells. Mol Nutr Food Res 50:314–321

    CAS  Google Scholar 

  • Kohama Y, Matsumoto S, Mimura T, Tanabe N, Inada A, Nakanishi T (1987) Isolation and identification of hypotensive principles in red-mold rice. Chem Pharm Bull 35:2484–2489

    CAS  Google Scholar 

  • Kongruang S (2010) Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J Ind Microbiol Biotechnol 38:93–99

    Google Scholar 

  • Kumasaki S, Nakanishi K, Nishikawa E, Ohashi M (1962) Structure of monascorubrin. Tetrahedron 18:1171–1184

    CAS  Google Scholar 

  • Lai Y, Wang L, Qing L, Chen FS (2011) Effects of cyclic AMP on development and secondary metabolites of Monascus ruber M-7. Lett Appl Microbiol 52:420–426

    CAS  Google Scholar 

  • Lee BH, Pan TM (2012) Benefit of Monascus-fermented products for hypertension prevention: a review. Appl Microbiol Biotechnol 94:1151–1161

    CAS  Google Scholar 

  • Lee BK, Park NH, Piao HY, Chung WJ (2001) Production of red pigments by Monascus purpureus in submerged culture. Biotechnol Bioprocess Eng 6:341–346

    CAS  Google Scholar 

  • Lee BK, Piao HY, Chung WJ (2002) Production of red pigments by Monascus purpureus in solid-state culture. Biotechnol Bioprocess Eng 7:21–25

    CAS  Google Scholar 

  • Lee BH, Hsu WH, Liao TH, Pan TM (2011) The Monascus metabolite monascin against TNF-α-induced insulin resistance via suppressing PPAR-γ phosphorylation in C2C12 myotubes. Food Chem Toxicol 49:2609–2617

    CAS  Google Scholar 

  • Li HR, Du ZW, Zhang JR (2003) Study on the stability of Monascus pigment. Food Sci 24:59–62

    Google Scholar 

  • Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452

    CAS  Google Scholar 

  • Li F, Xu G, Li Y, Chen X (2008) GB/T 5009.222-2008: determination of citrinin in Monascus products. AQSIQ 1–5

  • Li JJ, Shang XY, Li LL, Liu MT, Zheng JQ, Jin ZL (2010a) New cytotoxic azaphilones from Monascus purpureus-fermented rice (red yeast rice). Molecules 15:1958–1966

    CAS  Google Scholar 

  • Li L, Shao YC, Li Q, Yang S, Chen FS (2010b) Identification of Mga1, a G-protein α-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7. FEMS Microbiol Lett 308:108–114

    CAS  Google Scholar 

  • Li XM, Shen XH, Duan ZW, Guo SR (2011) Advances on the pharmacological effects of red yeast rice. Chin J Nat Med 9:161–166

    CAS  Google Scholar 

  • Lian XJ, Wang CL, Guo KL (2007) Identification of new red pigments produced by Monascus ruber. Dyes Pigments 73:121–125

    CAS  Google Scholar 

  • Lim HS, Yoo SK, Shin CS, Hyun YM (2000) Monascus red pigment overproduction by coculture with recombinant Saccharomyces cerevisiae secreting glucoamylase. J Microbiol 38:48–51

    CAS  Google Scholar 

  • Lin TF, Demain AL (1991) Effect of nutrition of Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol 36:70–75

    CAS  Google Scholar 

  • Lin TF, Demain AL (1993) Resting cell studies on formation of water-soluble red pigments by Monascus sp. J Ind Microbiol 12:361–367

    CAS  Google Scholar 

  • Lin TF, Demain AL (1994) Leucine interference in the production of water-soluble red Monascus pigements. Arch Microbiol 162:114–119

    CAS  Google Scholar 

  • Lin TF, Demain AL (1995) Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by Monascus sp. Appl Microbiol Biotechnol 43:701–705

    CAS  Google Scholar 

  • Lin CF, Iizuka H (1982) Production of extracellular pigment by a mutant of Monascus kaoliang sp. nov. Appl Environ Microbiol 43:671–676

    CAS  Google Scholar 

  • Lin TF, Yakushijin K, Büchi GH, Demain AL (1992) Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179

    CAS  Google Scholar 

  • Lin YL, Wang TH, Lee MH, Su NW (2008) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973

    CAS  Google Scholar 

  • Lin CP, Lin YL, Huang PH, Tsai HS, Chen YH (2011) Inhibition of endothelial adhesion molecule expression by Monascus purpureus-fermented rice metabolites, monacolin K, ankaflavin, and monascin. J Sci Food Agric 91:1751–1758

    CAS  Google Scholar 

  • Liu ZX, Du JH, Wang XX, Ma M (2007) Study on submerged fermentation conditions of a strain Monascus anka sp. producing pigment and glucoamylase. Food Ferment Ind 33:77–81

    Google Scholar 

  • Liu DC, Wu SW, Tan FJ (2010) Effects of addition of anka rice on the qualities of low-nitrite Chinese sausages. Food Chem 118:245–250

    CAS  Google Scholar 

  • Liu MT, Li JJ, Shang XY, Li S, Li LL, Luan N, Jin ZL (2011) Structure elucidation and complete NMR spectral assignment of an unusual aromatic monacolin analog from Monascus purpureus-fermented rice. Magn Reson Chem 49:129–131

    CAS  Google Scholar 

  • Loret MO, Morel S (2010) Isolation and structural characterization of two new metabolites from Monascus. J Agric Food Chem 58:1800–1803

    CAS  Google Scholar 

  • Mak NK, Fong WF, Leung YLW (1990) Improved fermentative production of Monascus pigments in roller bottle culture. Enzyme Microb Technol 12:965–968

    CAS  Google Scholar 

  • Manchand PS, Whalley WB (1973) Isolation and structure of ankaflavin: a new pigment from Monascus anka. Phytochemistry 12:2531–2532

    CAS  Google Scholar 

  • Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989

    CAS  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U (2009) Photostability of natural orange–red and yellow fungal pigments in liquid food model systems. J Agric Food Chem 57:6253–6261

    CAS  Google Scholar 

  • Martínková L, Jůzlová P, Veselý D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Microbiol 79:609–616

    Google Scholar 

  • Martínková L, Patáková Jůzlová P, Krent V, Kucerová Z, Havlícek V, Olsovský P, Hovorka O, Ríhová B, Veselý D, Veselá D, Ulrichová J, Prikrylová V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam 16:15–24

    Google Scholar 

  • Mchan F, Johnson GT (1970) Zinc and amino acids: important components of a medium promoting growth of Monascus purpureus. Mycologia 62:1018–1031

    CAS  Google Scholar 

  • Mchan F, Johnson GT (1979) Some effects of zinc on the utilization of nitrogen sources by Monascus purpureus. Mycologia 71:160–169

    CAS  Google Scholar 

  • Meinicke RM, Vendruscolo F, Esteves Moritz D, de Oliveira D, Schmidell W, Samohyl RW, Ninow JL (2012) Potential use of glycerol as substrate for the production of red pigments by Monascus ruber in submerged fermentation. Biocatal Agric Biotechnol 1:238–242

    CAS  Google Scholar 

  • Miyake T, Kono I, Nozaki N, Sammoto H (2008) Analysis of pigment compositions in various Monascus cultures. Food Sci Technol Res 14:194–197

    Google Scholar 

  • Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariyama M (2005) Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotechnol 32:103–108

    CAS  Google Scholar 

  • Mohamed MS, Mohamad R, Manan MA, Ariff AB (2009) Enhancement of red pigment production by Monascus purpureus FTC 5391 through retrofitting of helical ribbon impeller in stirred-tank fermenter. Food Bioprocess Technol 5:80–91

    Google Scholar 

  • Mohan Kumari HP, Akhilender Naidu K, Vishwanatha S, Narasimhamurthy K, Vijayalakshmi G (2009) Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem Toxicol 47:1739–1746

    CAS  Google Scholar 

  • Moll HR, Farr DR (1976) Red pigment and process. U S Pat 3 993 789 23

  • Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192

    CAS  Google Scholar 

  • Nimnoi P, Lumyong S (2009) Improving solid-state fermentation of Monascus purpureus on agricultural products for pigment production. Food Bioprocess Technol 4:1384–1390

    Google Scholar 

  • Orozco SFB, Kilikian BV (2007) Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J Microbiol Biotechnol 24:263–268

    Google Scholar 

  • Pattanagul P, Pinthong R, Phianmongkhol A, Leksawasdi N (2007) Review of angkak production (Monascus purpureus). Chiang Mai J Sci 34:319–328

    Google Scholar 

  • Pereira DG, Tonso A, Kilikian BV (2008) Effect of dissolved oxygen concentration on red pigment and citrinin produciton by Monascus purpureus ATCC 36928. Braz J Chem Eng 25:247–253

    CAS  Google Scholar 

  • Qian J, Wu Q (2010) Improving water solubility of Monascus pigment. J Chin Cereal Oil Assoc 25:77–79/92

    CAS  Google Scholar 

  • Salomon H, Karrer P (1932) Pflanzenfarbstoffe XXXVIII. Ein farbstoff aus “rotem” reis, monascin. Helv Chim Acta 15:18–22

    CAS  Google Scholar 

  • Sang-aroon W, Saekow S, Amornkitbamrung V (2012) Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J Photochem Photobiol A 236:35–40

    CAS  Google Scholar 

  • Santerre AL, Queinnec I, Blanc PJ (1995) A fedbatch strategy for optimal red pigment. Bioprocess Eng 13:245–250

    CAS  Google Scholar 

  • Sato K, Iwakami S, Goda Y, Okuyama E (1992) Novel natural colorants from Monascus anka U-1. Heterocycles 34:2057–2060

    CAS  Google Scholar 

  • Sato K, Goda Y, Sakamoto SS, Shibata H (1997) Identification of major pigments containing d-amino acid units in commercial Monascus pigments. Chem Pharm Bull 45:227–229

    CAS  Google Scholar 

  • Shao YC, Ding YD, Zhao Y, Yang S, Xie BJ, Chen FS (2009) Characteristic analysis of transformants in T-DNA mutation library of Monascus ruber. World J Microbiol Biotechnol 25:989–995

    CAS  Google Scholar 

  • Sheu F, Wang CL, Shyu YT (2000) Fermentation of Monascus purpureus on bacterial cellulose-nata and the color stability of Monascus-nata complex. J Food Sci 65:342–345

    CAS  Google Scholar 

  • Shi YC, Pan TM (2011) Beneficial effects of Monascus purpureus NTU 568-fermented products: a review. Appl Microbiol Biotechnol 90:1207–1217

    CAS  Google Scholar 

  • Shi YC, Liao VHC, Pan TM (2012) Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol Med 52:109–117

    CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Ishihara S, Sakai K, Nagai S, Nihira T (2005) Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 71:3453–3457

    CAS  Google Scholar 

  • Shin CS, Kim HJ, Kim MJ, Ju JY (1998) Morphological change and enhanced pigment produciton of Monascus when cocultured with Saccharomyces cerevisiae of Aspergillus oryzae. Biotechnol Bioeng 59:576–581

    CAS  Google Scholar 

  • Silveira ST, Daroit DJ, Sant’Anna V, Brandelli A (2011) Stability modeling of red pigments produced by Monascus purpureus in submerged cultivations with sugarcane bagasse. Food Bioprocess Technol. doi:10.1007/s11947-011-0710-8, pp. 1–8

  • Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270

    CAS  Google Scholar 

  • Song SS, Cui HX, Si SL (1995) Study on stability of Monascus pigment. J Hebei Acad Sci 27–34

  • Stchigel AM, Cano JF, Abdullah SK, Guarro J (2004) New and interesting species of Monascus from soil, with a key to the known species. Stud Mycol 50:299–306

    Google Scholar 

  • Su NW, Lin YL, Lee MH, Ho CY (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J Agric Food Chem 53:1949–1954

    CAS  Google Scholar 

  • Sun XH, Yang XR, Wang EK (2005) Chromatographic and electrophoretic procedures for analyzing plant pigments of pharmacologically interests. Anal Chim Acta 547:153–157

    CAS  Google Scholar 

  • Sweeny JG, Valdes MCE, Lacobucci GA, Sato H, Sakamura S (1981) Photoprotection of the red pigments of Monascus anka in aqueous media by 1,4,6-trihydroxynaphthalene. J Agric Food Chem 29:1189–1193

    CAS  Google Scholar 

  • Teng SS, Feldheim W (1998) Analysis of anka pigments by liquid chromatography with diode array detection and tandem mass spectrometry. Chromatographia 47:529–536

    Google Scholar 

  • Teng SS, Feldheim W (2000) The fermentation of rice for anka pigment production. J Ind Microbiol Biotechnol 25:141–146

    CAS  Google Scholar 

  • Tseng YY, Chen MT, Lin CF (2000) Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, polyphosphate and various sugars. J Appl Microbiol 88:31–37

    CAS  Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic Press, London England 15:445–476

  • Turner NW, Subrahmanyam S, Piletsky SA (2009) Analytical methods for determination of mycotoxins: a review. Anal Chim Acta 632:168–180

    CAS  Google Scholar 

  • Velmurugan P, Kamala Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010a) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym 79:262–268

    CAS  Google Scholar 

  • Velmurugan P, Kim MJ, Park JS, Karthikeyan K, Lakshmanaperumalsamy P, Lee KJ, Park YJ, Oh BT (2010b) Dyeing of cotton yarn with five water soluble fungal pigments obtained from five fungi. Fibers Polym 11:598–605

    CAS  Google Scholar 

  • Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010c) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350

    CAS  Google Scholar 

  • Vidyalakshmi R, Paranthaman R, Murugesh S, Singaravadivel K (2009a) Microbial bioconversion of rice broken to food grade pigments. Glob J Biotechnol Biochem 4:84–87

    CAS  Google Scholar 

  • Vidyalakshmi R, Paranthaman R, Murugesh S, Singaravadivel K (2009b) Stimulation of Monascus pigments by intervention of different nitrogen sources. Glob J Biotechnol Biochem 4:25–28

    CAS  Google Scholar 

  • Wang MQ, Wang ZT, Chen JS, Zhang JB, Li XY, Chen YJ, Luo XY, Fan YX, Wang J, Zhao D, Jin Qz, Tian J, Mao XD, Yang DJ (2007) National standard GB2760-2007: hygienic standards for uses of food additives. AQSIQ 23–24

  • Watanabe T, Yamamoto A, Nagai S, Terabe S (1997) Separation and determination of Monascus yellow pigments for food by micellar electrokinetic chromatography. Anal Sci 13:571–575

    CAS  Google Scholar 

  • Watanabe T, Mazumder TK, Yamamoto A, Nagai S, Arimoto-Kobayashi S, Hayatsu H, Terabe S (1999) A simple and rapid method for analyzing the Monascus pigment-mediated degradation of mutagenic 3-hydroxyamino-1-methyl-5 H-Pyrido[4,3-b] indole by in capillary micellar electrokinetic chromatography. Mutat Res 444:75–83

    CAS  Google Scholar 

  • Whalley WB (1963) The sclerotiorin group of fungal metabolites: their structure and biosynthesis. Pure Appl Chem 7:565–587

    CAS  Google Scholar 

  • Wild D, Toth G, Humpf HU (2002) New Monascus metabolite isolated from red yeast rice (angkak, red koji). J Agric Food Chem 50:3999–4002

    CAS  Google Scholar 

  • Wong HC, Bau YS (1977) Pigmentation and antibacterial activity of fast neutron- and X-ray-induced strains of Monascus purpureus Went. Plant Physiol 60:578–581

    Google Scholar 

  • Wong HC, Koehler PE (1983) Production of red water-soluble Monascus pigments. J Food Sci 48:1200–1203

    CAS  Google Scholar 

  • Wongjewboot I, Kongruang S (2011) pH stability of ultrasonic Thai isolated Monascus purpureus pigments. Int J Biosci Biochem Bioinforma 1:79–83

    Google Scholar 

  • Wu CL, Kuo YH, Lee CL, Hsu YW, Pan TM (2011) Synchronous high-performance liquid chromatography with a photodiode array detector and mass spectrometry for the determination of citrinin, monascin, ankaflavin, and the lactone and acid forms of monacolin K in red mold rice. J AOAC Int 94:179–190

    Google Scholar 

  • Yang X, Hu W, Xie F, Wang M (2007) Cirinin control in processing Monascus red. China Food Addit 145(z1):209–212

    Google Scholar 

  • Yang YS, Li L, Li X, Shao YC, Chen FS (2012) mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7. Fungal Biol 116:225–233

    CAS  Google Scholar 

  • Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R (1993) Culture conditions for yellow pigment formation by Monascus sp. KB 10 grown on cassava medium. World J Microbiol Biotechnol 9:85–90

    CAS  Google Scholar 

  • Yongsmith B, Krairak S, Bavavoda R (1994) Production of yellow pigments in submerged culture of a mutant of Monascus spp. J Ferment Bioeng 78:223–228

    CAS  Google Scholar 

  • Yoshimura M, Yamanaka S, Mitsugi K, Hirose Y (1975) Production of Monascus-pigment in a submerged culture. Agric Biol Chem 39:1789–1795

    CAS  Google Scholar 

  • Zhang H, Shen L, Xu G, Chen Y (2005) Studies on the extraction and stability of Monascus orange pigment. Food Ferment Ind 31:129–133

    CAS  Google Scholar 

  • Zheng YQ, Xin YW, Guo YH (2009) Study on the fingerprint profile of Monascus products with HPLC–FD, PAD and MS. Food Chem 113:705–711

    CAS  Google Scholar 

  • Zheng YQ, Xin YW, Shi XA, Guo YH (2010a) Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Appl Microbiol Biotechnol 88:1169–1177

    CAS  Google Scholar 

  • Zheng YQ, Xin YW, Shi XA, Guo YH (2010b) Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J Agric Food Chem 58:9523–9528

    CAS  Google Scholar 

  • Zhou B, Wang J, Pu Y, Zhu M, Liu S, Liang S (2009) Optimization of culture medium for yellow pigments production with Monascus anka mutant using response surface methodology. Eur Food Res Technol 228:895–901

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the programs for New Century of Chinese Ministry of Education (NCET-05-0667), National High Technology Research and Development Program of China (2006AA10Z1A3) and National Natural Science Foundation of China (nos. 31171649 and 31271834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Shao, Y. & Chen, F. Monascus pigments. Appl Microbiol Biotechnol 96, 1421–1440 (2012). https://doi.org/10.1007/s00253-012-4504-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4504-3

Keywords

Navigation