Skip to main content
Log in

Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In Penicillium chrysogenum, the industrial producer of the β-lactam antibiotic penicillin, generating gene replacements for functional analyses is very inefficient. Here, we constructed a recipient strain that allows efficient disruption of any target gene via homologous recombination. Following isolation of the Pcku70 (syn. hdfA) gene encoding a conserved eukaryotic DNA-binding protein involved in non-homologous end joining (NHEJ), a Pcku70 knockout strain was constructed using a novel nourseothricin-resistance cassette as selectable marker. In detailed physiological tests, strain ΔPcku70 showed no significant reduction in vegetative growth due to increased sensitivity to different mutagenic substances. Importantly, deletion of the Pcku70 gene had no effect on penicillin biosynthesis. However, strain ΔPcku70 exhibits higher sensitivity to osmotic stress than the parent strain. This correlated well with comparative data from microarray analyses: Genes related to the stress response are significantly up-regulated in the Pcku70 deletion mutant. To demonstrate the applicability of strain ΔPcku70, three genes related to β-lactam antibiotic biosynthesis were efficiently disrupted, indicating that this strain shows a low frequency of NHEJ, thus promoting efficient homologous recombination. Furthermore, we discuss strategies to reactivate Pcku70 in strains successfully used for gene disruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Aravind L, Koonin EV (2000) SAP—a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 25:112–114

    Article  CAS  Google Scholar 

  • Aravind L, Koonin EV (2001) Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11:1365–1374

    Article  CAS  Google Scholar 

  • Bahn YS (2008) Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot Cell 7:2017–2036

    Article  CAS  Google Scholar 

  • Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  CAS  Google Scholar 

  • Bugeja HE (2007) Genes affecting growth and development in Penicillium marneffei. Dissertation, University of Melbourne

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5:376–378

    CAS  Google Scholar 

  • Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061

    Article  CAS  Google Scholar 

  • Casqueiro J, Gutiérrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    CAS  Google Scholar 

  • Chen DR, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bähler J (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14:214–229

    Article  CAS  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357

    Article  CAS  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398

    Article  CAS  Google Scholar 

  • da Silva Ferreira ME, Kress MR, Savoldi M, Goldman MH, Hartl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuB KU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211

    Article  Google Scholar 

  • Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451

    Article  CAS  Google Scholar 

  • Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058

    Article  CAS  Google Scholar 

  • Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U (2007) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 73:3412–3422

    Article  CAS  Google Scholar 

  • El-Khoury R, Sellem CH, Coppin E, Boivin A, Maas MF, Debuchy R, Sainsard-Chanet A (2008) Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Curr Genet 53:249–258

    Article  CAS  Google Scholar 

  • Furukawa K, Yoshimi A, Furukawa T, Hoshi Y, Hagiwara D, Sato N, Fujioka T, Mizutani O, Mizuno T, Kobayashi T, Abe K (2007) Novel reporter gene expression systems for monitoring activation of the Aspergillus nidulans HOG pathway. Biosci Biotechnol Biochem 71:1724–1730

    Article  CAS  Google Scholar 

  • Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    Article  CAS  Google Scholar 

  • Goins CL, Gerik KJ, Lodge JK (2006) Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genet Biol 43:531–544

    Article  CAS  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919

    Article  CAS  Google Scholar 

  • Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139:146–151

    Article  CAS  Google Scholar 

  • Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Δku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45:35–44

    Article  CAS  Google Scholar 

  • Haas H, Angermayr K, Zadra I, Stoffler G (1997) Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem 272:22576–22582

    Article  CAS  Google Scholar 

  • Handa N, Noguchi Y, Sakuraba Y, Ballario P, Macino G, Fujimoto N, Ishii C, Inoue H (2000) Characterization of the Neurospora crassa mus-25 mutant: the gene encodes a protein which is homologous to the Saccharomyces cerevisiae Rad54 protein. Mol Gen Genet 264:154–163

    Article  CAS  Google Scholar 

  • Hatakeyama S, Ishii C, Inoue H (1995) Identification and expression of the Neurospora crassa mei-3 gene which encodes a protein homologous to Rad51 of Saccharomyces cerevisiae. Mol Gen Genet 249:439–446

    Article  CAS  Google Scholar 

  • Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 4:639–648

    CAS  Google Scholar 

  • Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci USA 105:7165–7170

    Article  CAS  Google Scholar 

  • Hoff B, Kück U (2005) Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet 47:132–138

    Article  CAS  Google Scholar 

  • Hoff B, Schmitt EK, Kück U (2005) CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Mol Microbiol 56:1220–1233

    Article  CAS  Google Scholar 

  • Hoff B, Pöggeler S, Kück U (2008) Eighty years after its discovery, Fleming's Penicillium strain discloses the secret of its sex. Eukaryot Cell 7:465–470

    Article  CAS  Google Scholar 

  • Hsu HL, Yannone SM, Chen DJ (2002) Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair (Amst) 1:225–235

    Article  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003a) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003b) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103:14871–14876

    Article  CAS  Google Scholar 

  • Janus D, Hoff B, Hofmann E, Kück U (2007) An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol 73:962–970

    Article  CAS  Google Scholar 

  • Jekosch K, Kück U (2000) Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37:388–395

    Article  CAS  Google Scholar 

  • Käfer E (1965) Origins of translocations in Aspergillus nidulans. Genetics 52:217–232

    Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  CAS  Google Scholar 

  • Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    Article  CAS  Google Scholar 

  • Krappmann S (2007) Gene targeting in filamentous fungi: the benfits of impaired repair. Fungal Biol Rev 21:25–29

    Article  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5:212–215

    Article  CAS  Google Scholar 

  • Kück U, Hoff B (2006) Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newsl 53:9–11

    Google Scholar 

  • la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536

    Article  Google Scholar 

  • Liu G, Casqueiro J, Bañuelos O, Cardoza RE, Gutiérrez S, Martín JF (2001) Targeted inactivation of the mecB gene, encoding cystathione-gamma-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. J Bacteriol 183:1765–1772

    Article  CAS  Google Scholar 

  • Madera M, Vogel C, Kummerfeld SK, Chothia C, Gough J (2004) The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res 32:D235–D239

    Article  CAS  Google Scholar 

  • Meek K, Gupta S, Ramsden DA, Lees-Miller SP (2004) The DNA-dependent protein kinase: the director at the end. Immunol Rev 200:132–141

    Article  CAS  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    Article  CAS  Google Scholar 

  • Minuth W, Tudzynski P, Esser K (1982) Extrachromosomal genetics of Cephalosporium acremonium. Curr Genet 25:34–40

    Google Scholar 

  • Moore JD, Krebs JE (2004) Histone modifications and DNA double-strand break repair. Biochem Cell Biol 82:446–452

    Article  CAS  Google Scholar 

  • Nakayashiki H, Nguyen QB (2008) RNA interference: roles in fungal biology. Curr Opin Microbiol 11:494–502

    Article  CAS  Google Scholar 

  • Nakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283

    CAS  Google Scholar 

  • Naranjo L, Martin de Valmaseda E, Casqueiro J, Ullan RV, Lamas-Maceiras M, Banuelos O, Martin JF (2004) Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from α-aminoadipic acid. Appl Environ Microbiol 70:1031–1039

    Article  CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  CAS  Google Scholar 

  • Nowrousian M, Ringelberg C, Dunlap JC, Loros JJ, Kück U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Genet Genomics 273:137–149

    Article  CAS  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  Google Scholar 

  • Pöggeler S, Kück U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10

    Article  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275:8290–8300

    Article  CAS  Google Scholar 

  • Sakuraba Y, Schroeder AL, Ishii C, Inoue H (2000) A Neurospora double-strand-break repair gene, mus-11, encodes a RAD52 homologue and is inducible by mutagens. Mol Gen Genet 264:392–401

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schmitt EK, Kück U (2000) The fungal CPCR1 protein, which binds specifically to β-lactam biosynthesis genes, is related to human regulatory factor X transcription factors. J Biol Chem 275:9348–9357

    Article  CAS  Google Scholar 

  • Schmitt EK, Bunse A, Janus D, Hoff B, Friedlin E, Kürnsteiner H, Kück U (2004) Winged helix transcription factor CPCR1 is involved in regulation of β-lactam biosynthesis in the fungus Acremonium chrysogenum. Eukaryot Cell 3:121–134

    Article  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3

    Google Scholar 

  • Snoek IS, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RA, van den Berg MA, Daran JM (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418–426

    Article  CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006a) Identification and analysis of Ku70 and Ku80 homologs in the koji molds Aspergillus sojae and Aspergillus oryzae. Biosci Biotechnol Biochem 70:135–143

    Article  CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006b) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Ullán RV, Godio RP, Teijeira F, Vaca I, García-Estrada C, Feltrer R, Kosalkova K, Martín JF (2008) RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using beta-lactam genes expression. J Microbiol Methods 75:209–218

    Article  Google Scholar 

  • van de Kamp M, Pizzinini E, Vos A, van der Lende TR, Schuurs TA, Newbert RW, Turner G, Konings WN, Driessen AJ (1999) Sulfate transport in Penicillium chrysogenum: cloning and characterization of the sutA and sutB genes. J Bacteriol 181:7228–7234

    Google Scholar 

  • van den Berg MA, Westerlaken I, Leeflang C, Kerkman R, Bovenberg RA (2007) Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54–1255. Fungal Genet Biol 44:830–844

    Article  Google Scholar 

  • van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martín JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Döhren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  CAS  Google Scholar 

  • Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45:68–75

    Article  CAS  Google Scholar 

  • Watanabe S, Yamashita K, Ochiai N, Fukumori F, Ichiishi A, Kimura M, Fujimura M (2007) OS-2 mitogen activated protein kinase regulates the clock-controlled gene ccg-1 in Neurospora crassa. Biosci Biotechnol Biochem 71:2856–2859

    Article  CAS  Google Scholar 

  • Watson A, Mata J, Bähler J, Carr A, Humphrey T (2004) Global gene expression responses of fission yeast to ionizing radiation. Mol Biol Cell 15:851–860

    Article  CAS  Google Scholar 

  • Wettenhall JM, Simpson KM, Satterley K, Smyth GK (2006) affylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics 22:897–899

    Article  CAS  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387

    Article  CAS  Google Scholar 

  • Windhofer F, Hauck K, Catcheside DE, Kück U, Kempken F (2002) Ds-like Restless deletion derivatives occur in Tolypocladium inflatum and two foreign hosts, Neurospora crassa and Penicillium chrysogenum. Fungal Genet Biol 35:171–182

    Article  CAS  Google Scholar 

  • Yamashita K, Shiozawa A, Banno S, Fukumori F, Ichiishi A, Kimura M, Fujimura M (2007) Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa. Genes & Genet Syst 82:301–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kerstin Kalkreuter and Stefanie Mertens for their excellent technical assistance and Eva Szczypka and Gabriele Frenßen-Schenkel for the artwork. Furthermore, we thank Drs. Hubert Kürnsteiner, Ernst Friedlin, Rudolf Mitterbauer, Heiko Eichhorn and Thomas Specht for helpful discussion. This work was funded by the Sandoz GmbH (Kundl, Austria) and the Christian Doppler Society (Vienna, Austria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Hoff.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. 1S

Comparison of the Penicillium chrysogenum (Pc) Pcku70 protein with homologues of Aspergillus fumigatus (Af; XM_748769), N. crassa (Nc; BAD16622), Sordaria macrospora (Sm; AM117808) and human (Hs; P12956) (GIF 226 kb)

High resolution image file (TIFF 2 mb).

Fig. 2S

Phenotype of strains P2niaD18 and ΔPcku70 grown on minimal media supplemented with 0.4 M up to 1.2 M NaCl or KCl (GIF 143 kb)

High resolution image file (TIFF 5 mb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoff, B., Kamerewerd, J., Sigl, C. et al. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 85, 1081–1094 (2010). https://doi.org/10.1007/s00253-009-2168-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2168-4

Keywords

Navigation