Skip to main content

Advertisement

Log in

Extrachromosomal genetic elements in Micrococcus

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Rahman AMM, El-Bana LFA (2006) Using of Micrococcus luteus as a probiotic bacteria among cultured Oreochromis niloticus. SCVMJ 10:73–82

    Google Scholar 

  • Ackermann HW (1975) Classification of the bacteriophages of Gram-positive cocci: Micrococcus, Staphylococcus, and Streptococcus. Pathol Biol (Paris) 23:247–253

    CAS  Google Scholar 

  • Ackermann HW, Eisenstark A (1974) The present state of phage taxonomy. Intervirology 3:201–209

    Article  CAS  Google Scholar 

  • Adang RP, Schouten HC, van Tiel FH, Blijham GH (1992) Pneumonia due to Micrococcus spp. in a patient with acute myeloid leukaemia. Leukemia 6:224–226

    CAS  Google Scholar 

  • Addis E, Fleet GH, Cox JM, Kolak D, Leung T (2001) The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int J Food Microbiol 69:25–36

    Article  CAS  Google Scholar 

  • Akita K, Naitou C, Maruyama K (2001) Purification and characterization of an esterase from Micrococcus sp. YGJ1 hydrolyzing phthalate esters. Biosci Biotechnol Biochem 65:1680–1683

    Article  CAS  Google Scholar 

  • Albro PW, Dittmer JC (1970) Bacterial hydrocarbons: occurrence, structure and metabolism. Lipids 5:320–325

    Article  CAS  Google Scholar 

  • Altalhi AD (2009) Plasmids profiles, antibiotic and heavy metal resistance incidence of endophytic bacteria isolated from grapevine (Vitis vinifera L.). Afr J Biotechnol 8:5873–5882

    CAS  Google Scholar 

  • Antony R, Krishnan KP, Laluraj CM, Thamban M, Dhakephalkar PK, Engineer AS, Shivaji S (2012) Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol Res 167:372–380

    Article  CAS  Google Scholar 

  • Atencio BL, Rivera SJ, Aranaga NV, Navarro C, Guiñez J (2009) Plasmid and antibiotic susceptibility characterization in Micrococcus sp. strains. Bol Centro Invest Biol 43:77–95

    Google Scholar 

  • Baird-Parker AC (1974) Genus I. Micrococcus Cohn 1872, 151. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 478–483

    Google Scholar 

  • Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76:1212–1223

    Article  CAS  Google Scholar 

  • Bevinakatti BG, Ninnekar HZ (1993) Biodegradation of 4-chlorobiphenyl by Micrococcus species. World J Microbiol Biotechnol 9:607–608

    Article  CAS  Google Scholar 

  • Bhattacharyya G, Chaudhuri J, Mandal A (1988) Elimination of mercury, cadmium and antibiotic resistance from Acinetobacter lwoffi and Micrococcus sp. at high temperature. Folia Microbiol (Praha) 33:213–218

    Article  CAS  Google Scholar 

  • Biskupiak JE, Meyers E, Gillum AM, Dean L, Trejo WH, Kirsch DR (1988) Neoberninamycin, a new antibiotic produced by Micrococcus luteus. J Antibiot (Tokyo) 41:684–687

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2003) Characterization of a small plasmid (pMBCP) from bovine Pseudomonas pickettii that confers cadmium resistance. Ecotoxicol Environ Saf 54:241–248

    Article  CAS  Google Scholar 

  • Bultel-Poncé VV, Debitus C, Berge JP, Cerceau C, Guyot M (1998) Metabolites from the sponge-associated bacterium Micrococcus luteus. J Mar Biotechnol 6:233–236

    Google Scholar 

  • Burgi E, Naylor HB (1956) Observations on abortive infection of Micrococcus lysodeikticus with bacteriophage. Virology 2:577–593

    Article  CAS  Google Scholar 

  • Chantawannakul P, Yoshimune K, Shirakihara Y, Shiratori A, Wakayama M, Moriguchi M (2003) Crystallization and preliminary X-ray crystallographic studies of salt-tolerant glutaminase from Micrococcus luteus K-3. Acta Crystallogr D: Biol Crystallogr 59(Pt 3):566–568

    Article  CAS  Google Scholar 

  • Chen HH, Zhao GZ, Park DJ, Zhang YQ, Xu LH, Lee JC, Kim CJ, Li WJ (2009) Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. Int J Syst Evol Microbiol 59:1070–1075

    Article  CAS  Google Scholar 

  • Chittpurna SPK, Verma D, Pinnaka AK, Mayilraj S, Korpole S (2011) Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 61:2832–2836

    Article  CAS  Google Scholar 

  • Clark DJ, Hawrylik SJ, Kavanagh E, Opheim DJ (2000) Purification and characterization of a unique alkaline elastase from Micrococcus luteus. Protein Expr Purif 18:46–55

    Article  CAS  Google Scholar 

  • Cohn F (1872) Untersuchungen über Bakterien. Beitr Biol Pflanz 1:127–244

    Google Scholar 

  • Compton SW, Mayo JA, Ehrlich M, Ackermann HW, Tremblay L, Cords CE, Scaletti JV (1979) DNA base composition, nature of intracellular DNA, morphology, and classification of bacteriophages infecting Micrococcus luteus. Can J Microbiol 25:1027–1035

    Article  CAS  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010a) Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  CAS  Google Scholar 

  • Dastager SG, Raziuddin S, Deepa CK, Tang SK, Li WJ, Pandey A (2010b) Micrococcus niistensis sp. nov., isolated from forest soil, India. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.023382-0

  • Dhanarani TS, Shankar C, Park J, Dexilin M, Kumar RR, Thamaraiselvi K (2009) Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Poult Sci 88:1381–1387

    Article  CAS  Google Scholar 

  • Dib J, Motok J, Zenoff VF, Ordonez O, Farias ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56:510–517

    Article  CAS  Google Scholar 

  • Dib JR, Weiss A, Neumann A, Ordonez O, Estevez MC, Farias ME (2009a) Isolation of bacteria from remote high altitude Andean lakes able to grow in the presence of antibiotics. Recent Pat Antiinfect Drug Discov 4:66–76

    Article  CAS  Google Scholar 

  • Dib JR, Wagenknecht M, Farias ME, Meinhardt F (2009b) Large linear plasmids in Micrococcus strains isolated from Argentinean high-altitude wetlands. In: BIOspektrum, Sonderausgabe 2009, Tagungsband zur VAAM-Jahrestagung 2009 (ISSN 0947–0867), Bochum, März 2009, Spektrum - Akademischer Verlag

  • Dib JR, Wagenknecht M, Hill RT, Farias ME, Meinhardt F (2010a) First report of linear megaplasmids in the genus Micrococcus. Plasmid 63:40–45

    Article  CAS  Google Scholar 

  • Dib JR, Wagenknecht M, Hill RT, Farias ME, Meinhardt F (2010b) Novel linear megaplasmid from Brevibacterium sp. isolated from extreme environment. J Basic Microbiol 50:280–284

    Article  CAS  Google Scholar 

  • Doddamani HP, Ninnekar HZ (2001) Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43:69–73

    Article  CAS  Google Scholar 

  • Dogra N, Qazi GN (1999) Biotransformation of cholesterol by Micrococcus species mediated by plasmid DNA. World J Microbiol Biotechnol 15:411–415

    Article  CAS  Google Scholar 

  • Dogra N, Qazi GN (2001) Steroid biotransformation by different strains of Micrococcus sp. Folia Microbiol (Praha) 46:17–20

    Article  CAS  Google Scholar 

  • Du LN, Zhao M, Li G, Zhao XP, Zhao YH (2011) Highly efficient decolorization of malachite green by a novel Micrococcus sp. strain BD15. Environ Sci Pollut Res Int 19:2898–2907

    Article  CAS  Google Scholar 

  • Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979

    CAS  Google Scholar 

  • Eady EA, Coates P, Ross JI, Ratyal AH, Cove JH (2000) Antibiotic resistance patterns of aerobic coryneforms and furazolidone-resistant Gram-positive cocci from the skin surface of the human axilla and fourth toe cleft. J Antimicrob Chemother 46:205–213

    Article  CAS  Google Scholar 

  • Eaton RW, Ribbons DW (1982) Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57

    CAS  Google Scholar 

  • El-Sayeda WS, El-Baz AF, Othman AM (2005) Biodegradation of melamine formaldehyde by Micrococcus sp. strain MF-1 isolated from aminoplastic wastewater effluent. Int Biodeterior Biodegrad 57:75–81

    Article  CAS  Google Scholar 

  • Faison BD, Cancel CA, Lewis SN, Adler HI (1990) Binding of dissolved strontium by Micrococcus luteus. Appl Environ Microbiol 56:3649–3656

    CAS  Google Scholar 

  • Fan HX, Liu Y, Liu ZP (2009) Optimization of fermentation conditions for cold-adapted amylase production by Micrococcus antarcticus and its enzymatic properties. Huan Jing Ke Xue 30:2473–2478

    CAS  Google Scholar 

  • Field AK, Naylor HB (1962) Induction of lysogenic Micrococcus lysodeikticus. J Bacteriol 84:1129–1133

    CAS  Google Scholar 

  • Fischer-Colbrie G, Matama T, Heumann S, Martinkova L, Cavaco Paulo A, Guebitz G (2007) Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. J Biotechnol 129:62–68

    Article  CAS  Google Scholar 

  • Fotso S, Zabriskie TM, Proteau PJ, Flatt PM, Santosa DA, Mahmud T (2009) Limazepines A-F, pyrrolo[1,4]benzodiazepine antibiotics from an Indonesian Micrococcus sp. J Nat Prod 72:690–695

    Article  CAS  Google Scholar 

  • Frank AC, Wolfe KH (2009) Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes. Eukaryot Cell 8:1521–1531

    Article  CAS  Google Scholar 

  • García Fontán MC, Lorenzo JM, Parada A, Franco I, Carballo J (2007) Microbiological characteristics of “androlla”, a Spanish traditional pork sausage. Food Microbiol 24:52–58

    Article  Google Scholar 

  • Greenblatt CL, Baum J, Klein BY, Nachshon S, Koltunov V, Cano RJ (2004) Micrococcus luteus—survival in amber. Microb Ecol 48:120–127

    Article  CAS  Google Scholar 

  • Griffiths AJ (1995) Natural plasmids of filamentous fungi. Microbiol Rev 59:673–685

    CAS  Google Scholar 

  • Gu JD (2007) Microbial colonization of polymeric materials for space applications and mechanisms of biodegradation: a review. Int Biodeterior Biodegrad 59:170–179

    Article  CAS  Google Scholar 

  • Guha A, Kumari B, Bora TC, Roy MK (1997) Possible involvement of plasmids in degradation of malathion and chlorpyriphos by Micrococcus sp. Folia Microbiol (Praha) 42:574–576

    Article  CAS  Google Scholar 

  • Harder J, Probian C (1997) Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium. Arch Microbiol 167:269–274

    Article  CAS  Google Scholar 

  • Hayakawa T, Otake N, Yonehara H, Tanaka T, Sakaguchi K (1979) Isolation and characterization of plasmids from Streptomyces. J Antibiot (Tokyo) 32:1348–1350

    Article  CAS  Google Scholar 

  • Hinnebusch J, Tilly K (1993) Linear plasmids and chromosomes in bacteria. Mol Microbiol 10:917–922

    Article  CAS  Google Scholar 

  • Imura A, Itoh M, Miyadera A (1999) Purification, properties and reactivity of the esterase from Micrococcus sp. Biol Pharm Bull 22:654–656

    Article  CAS  Google Scholar 

  • Jakowec MW, Smith LT, Dandekar AM (1985) Recombinant plasmid conferring proline overproduction and osmotic tolerance. Appl Environ Microbiol 50:441–446

    CAS  Google Scholar 

  • Jayaprakash NS, Pai SS, Anas A, Preetha R, Philip R, Singh IS (2005) A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems. Dis Aquat Org 68:39–45

    Article  CAS  Google Scholar 

  • Kalkus J, Reh M, Schlegel HG (1990) Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. J Gen Microbiol 136:1145–1151

    Article  CAS  Google Scholar 

  • Kalkus J, Dorrie C, Fischer D, Reh M, Schlegel HG (1993) The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy: characterization of the plasmid and its termini. J Gen Microbiol 139:2055–2065

    Article  CAS  Google Scholar 

  • Kaprelyants AS, Kell DB (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59:3187–3196

    CAS  Google Scholar 

  • Kaprelyants AS, Gottschal JC, Kell BD (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol Rev 10:271–285

    CAS  Google Scholar 

  • Kaprelyants AS, Mukamolova GV, Davey HMKD (1996) Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting. Appl Environ Microbiol 62:1311–1316

    CAS  Google Scholar 

  • Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 25:461–474

    Article  CAS  Google Scholar 

  • Kim MH, Kong YJ, Baek H, Hyun HH (2006) Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5. J Biotechnol 121:54–61

    Article  CAS  Google Scholar 

  • Kinashi H, Shimaji-Murayama M (1991) Physical characterization of SCP1, a giant linear plasmid from Streptomyces coelicolor. J Bacteriol 173:1523–1529

    CAS  Google Scholar 

  • Klassen R, Meinhardt F (2007) Microbial linear plasmids. Microbiology Monographs, vol 7. Springer, Berlin

    Google Scholar 

  • Kloos WE, Tornabene TG, Schleifer KH (1974) Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. Int J Syst Bacteriol 24:79–101

    Article  CAS  Google Scholar 

  • Kokur M, Schleifer KH, Kloos WE (1975) Taxonomic status of Micrococcus nishinomiyaensis Oda 1935. Int J Syst Bacteriol 25:290–293

    Article  Google Scholar 

  • Kolkenbrock S, Naumann B, Hippler M, Fetzner S (2010) A novel replicative enzyme encoded by the linear Arthrobacter plasmid pAL1. J Bacteriol 192:4935–4943

    Article  CAS  Google Scholar 

  • Labuzek S, Mrozik A, Pajak J, Kasiak J (1994) Transformation of E. coli with plasmids coding for degradation of aromatic structure of phenols. Acta Biochim Pol 41:127–128

    Google Scholar 

  • Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32:403–430

    CAS  Google Scholar 

  • Lee CS, Davidson N (1970) Studies on the deoxyribonucleic acids from bacteriophages of Micrococcus lysodeikticus. Virology 40:102–117

    Article  CAS  Google Scholar 

  • Levchenko LA, Sadkov AP, Marakushev SA, Lariontseva NV (1997) Participation of biological membranes in colloidal gold transformation by Micrococcus luteus cells. Membr Cell Biol 11:131–135

    CAS  Google Scholar 

  • Levchenko LA, Sadkov AP, Lariontseva NV, Koldasheva EM, Shilova AK, Shilov AE (2002) Gold helps bacteria to oxidize methane. J Inorg Biochem 88:251–253

    Article  CAS  Google Scholar 

  • Liebl W, Kloos WE, Ludwig W (2002) Plasmid-borne macrolide resistance in Micrococcus luteus. Microbiology 148:2479–2487

    CAS  Google Scholar 

  • Liu H, Xu Y, Ma Y, Zhou P (2000) Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. Int J Syst Evol Microbiol 50:715–719

    Article  CAS  Google Scholar 

  • Liu XY, Wang BJ, Jiang CY, Liu SJ (2007) Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 57:66–69

    Article  CAS  Google Scholar 

  • Lobova TI, Zagrebel'nyi SN, Popova L (2005) Influence of the salt concentration in culture on the copy number of plasmid pSH1 in cells of Micrococcus sp. 9. Mikrobiologiia 74:349–356

    CAS  Google Scholar 

  • Lovett PS, Shockman GD (1970a) Characteristics of bacteriophage N1 and its attachment to cells of Micrococcus lysodeikticus. J Virol 6:125–134

    CAS  Google Scholar 

  • Lovett PS, Shockman GD (1970b) Interaction of bacteriophage N1 with cell walls of Micrococcus lysodeikticus. J Virol 6:135–144

    CAS  Google Scholar 

  • Luna VA, Coates P, Eady EA, Cove JH, Nguyen TTH, Roberts MC (1999) A variety of Gram-positive bacteria carry mobile mef genes. J Antimicrob Chemother 44:19–25

    Article  CAS  Google Scholar 

  • Mandel M, Schildkraut CL, Marmur J (1968) Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. In: Methods in enzymology. Vol. 12 part. B. Academic Press, New York, pp 184–195

    Google Scholar 

  • Manikandan M, Kannan V, Pasic L (2011) Extraction, purification and characterization of a protease from Micrococcus sp. VKMM 037. Environ Technol 32:1487–1495

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  Google Scholar 

  • Martins G, Miot-Sertier C, Lauga B, Claisse O, Lonvaud-Funel A, Soulas G, Masneuf-Pomarede I (2012) Grape berry bacterial microbiota: impact of the ripening process and the farming system. Int J Food Microbiol 158:93–100

    Article  CAS  Google Scholar 

  • Maruyama K, Akita K, Naitou C, Yoshida M, Kitamura T (2005) Purification and characterization of an esterase hydrolyzing monoalkyl phthalates from Micrococcus sp. YGJ1. J Biochem 137:27–32

    Article  CAS  Google Scholar 

  • Mathis JN, Kloos WE (1984) Isolation and characterization of Micrococcus plasmids. Curr Microbiol 10:339–344

    Article  CAS  Google Scholar 

  • Meinhardt F, Kempken F, Esser K (1986) Proteins are attached to the ends of a linear plasmid in the filamentous fungus Ascobolus immersus. Curr Genet 11:243–246

    Article  CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17(2):89–95

    Article  CAS  Google Scholar 

  • Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids. Appl Microbiol Biotechnol 47:329–336

    Article  CAS  Google Scholar 

  • Miltiadous G, Elisaf M (2011) Native valve endocarditis due to Micrococcus luteus: a case report and review of the literature. J Med Case Rep 29:251

    Article  Google Scholar 

  • Mirdamadian SH, Emtiazi G, Golabi MH, Ghanavati H (2010) Biodegradation of petroleum and aromatic hydrocarbons by bacteria isolated from petroleum-contaminated soil. J Pet Environ Biotechnol 1. doi:10.4172/2157-7463.1000102

  • Mohedano AF, Fernandez J, Gaya P, Medina M, Nunez M (1997) Effect of pH, temperature and culture medium composition on the production of an extracellular cysteine proteinase by Micrococcus sp. INIA 528. J Appl Microbiol 82:81–86

    Article  CAS  Google Scholar 

  • Molina L, Duque E, Gomez MJ, Krell T, Lacal J, Garcia-Puente A, Garcia V, Matilla MA, Ramos JL, Segura A (2011) The pGRT1 plasmid of Pseudomonas putida DOT-T1E encodes functions relevant for survival under harsh conditions in the environment. Environ Microbiol 13:2315–2327

    Article  CAS  Google Scholar 

  • Mukamolova GV, Kaprelyants AS, Kell DB (1995) Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie Van Leeuwenhoek 67:289–295

    Article  CAS  Google Scholar 

  • Mukamolova GV, Yanopolskaya ND, Kell DB, Kaprelyants AS (1998) On resuscitation from the dormant state of Micrococcus luteus. Antonie Van Leeuwenhoek 73:237–243

    Article  CAS  Google Scholar 

  • Mukamolova GV, Turapov OA, Kazarian K, Telkov M, Kaprelyants AS, Kell DB, Young M (2002) The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol 46:611–621

    Article  CAS  Google Scholar 

  • Mukamolova GV, Murzin AG, Salina EG, Demina GR, Kell DB, Kaprelyants AS, Young M (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98

    Article  CAS  Google Scholar 

  • Mulla SI, Hoskeri RS, Shouche YS, Ninnekar HZ (2011) Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation 22:95–102

    Article  CAS  Google Scholar 

  • Muthukumar K, Bharath C, Pugalenthi V, Velan M (2009) Biodegradation kinetics of benzoic and anthranilic acids by Micrococcus sp. J Sci Ind Res 68:900–903

    CAS  Google Scholar 

  • Nandakumar R, Wakayama M, Nagano Y, Kawamura T, Sakai K, Moriguchi M (1999) Overexpression of salt-tolerant glutaminase from Micrococcus luteus K-3 in Escherichia coli and its purification. Protein Expr Purif 15:155–161

    Article  CAS  Google Scholar 

  • Ogawa N, Chakrabarty AM, Zaborina O (2004) Degradative plasmids. In: Funnell E, Philips GJ (eds) Plasmid biology. ASM, Washington, pp 341–376

    Google Scholar 

  • Ohama T, Muto A, Osawa S (1990) Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Res 18:1565–1569

    Article  CAS  Google Scholar 

  • Ordonez OF, Flores MR, Dib JR, Paz A, Farias ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58:461–473

    Article  Google Scholar 

  • Overhage J, Sielker S, Homburg S, Parschat K, Fetzner S (2005) Identification of large linear plasmids in Arthrobacter spp. encoding the degradation of quinaldine to anthranilate. Microbiology 151:491–500

    Article  CAS  Google Scholar 

  • Peters G, Pulverer G (1975) Bacteriophages from micrococci (author's transl). Zentralbl Bakteriol Orig A 232:221–226

    CAS  Google Scholar 

  • Polo S, Guerini O, Sosio M, Deho G (1998) Identification of two linear plasmids in the actinomycete Planobispora rosea. Microbiology 144:2819–2825

    Article  CAS  Google Scholar 

  • Prado B, Jara A, del Moral A, Sanchez E (2001) Numerical taxonomy of microorganisms isolated from goat cheese made in Chile. Curr Microbiol 43:396–399

    Article  CAS  Google Scholar 

  • Pring DR, Levings CS III, Hu WW, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc Natl Acad Sci 74:2904–2908

    Article  CAS  Google Scholar 

  • Rajee O, Patterson J (2011) Decolorization of azo dye (orange MR) by an autochthonous bacterium, Micrococcus sp. DBS 2. Indian J Microbiol 51:159–163

    Article  CAS  Google Scholar 

  • Ravel J, Schrempf H, Hill RT (1998) Mercury resistance is encoded by transferable giant linear plasmids in two chesapeake bay Streptomyces strains. Appl Environ Microbiol 64:3383–3388

    CAS  Google Scholar 

  • Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci U S A 70:885–889

    Article  CAS  Google Scholar 

  • Rieser G, Scherer S, Wenning M (2012) Micrococcus cohnii sp. nov., isolated from air of a medical practice. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.036434-0

  • Robertson PS, Perry KD (1961) Enhancement of the flavour of Cheddar cheese by adding a strain of Micrococcus to the milk. J Dairy Res 28:245–253

    Article  Google Scholar 

  • Rohe M, Schründer J, Tudzynski P, Meinhardt F (1992) Phylogenetic relationships of linear, protein-primed replicating genomes. Curr Genet 21:173–176

    Article  CAS  Google Scholar 

  • Rose K, Fetzner S (2006) Identification of linear plasmid pAM1 in the flavonoid degrading strain Actinoplanes missouriensis(T) (DSM 43046). Plasmid 55:249–254

    Article  CAS  Google Scholar 

  • Sakaguchi K (1990) Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol Rev 54:66–74

    CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) Ecofriendly degradation of sulfonated diazo dye C.I. Reactive Green 19A using Micrococcus glutamicus NCIM-2168. Bioresour Technol 100:3897–3905

    Article  CAS  Google Scholar 

  • Satwika D, Klassen R, Meinhardt F (2012a) Repeated capture of a cytoplasmic linear plasmid by the host nucleus in Debaryomyces hansenii. Yeast 29:145–154

    Article  CAS  Google Scholar 

  • Satwika D, Klassen R, Meinhardt F (2012b) Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 96:345–356

    Article  CAS  Google Scholar 

  • Scaletti JV, Naylor HB (1959) Characterization of purines and pyrimidines of deoxypentose nucleic acids from Micrococcus lysodeikticus and bacteriophage. J Bacteriol 78:422–426

    CAS  Google Scholar 

  • Shanks D, Goldwater P, Pena A, Saxon B (2001) Fatal Micrococcus sp. infection in a child with leukaemia—a cautionary case. Med Pediatr Oncol 37:553–554

    Article  CAS  Google Scholar 

  • Sims GK, Sommers LE, Konopka A (1986) Degradation of pyridine by Micrococcus luteus isolated from soil. Appl Environ Microbiol 51:963–968

    CAS  Google Scholar 

  • Solow BT, Somkuti GA (2001) Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr Microbiol 42:122–128

    Article  CAS  Google Scholar 

  • Souhami L, Feld R, Tuffnell PG, Feller T (1979) Micrococcus luteus pneumonia: a case report and review of the literature. Med Pediatr Oncol 7:309–314

    Article  CAS  Google Scholar 

  • Sozzi T, Maret R, Cerise L (1973) Isolation and some characteristics of two Micrococcus phages from Italian salami, type Varzi. Arch Mikrobiol 92:313–320

    Article  CAS  Google Scholar 

  • Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692

    Article  CAS  Google Scholar 

  • Stecker C, Johann A, Herzberg C, Averhoff B, Gottschalk G (2003) Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol 185:5269–5274

    Article  CAS  Google Scholar 

  • Stelzner A, Holtz H, Klein U, Klein YM, Schmidt J (1982) Analysis of methods for optimizing lysozyme determination. Allerg Immunol (Leipz) 28:251–259

    CAS  Google Scholar 

  • Stierle AC, Cardellina JH 2nd, Singleton FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44:1021

    Article  CAS  Google Scholar 

  • Takeyama H, Nakayama H, Matsunaga T (2000) Salinity-regulated replication of the endogenous plasmid pSY10 from the marine cyanobacterium Synechococcus sp. Appl Biochem Biotechnol 84–86:447–453

    Article  Google Scholar 

  • Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82

    Article  CAS  Google Scholar 

  • Thavasi R, Aparnadevi K, Jayalakshmi S, Balasubramanian T (2007) Plasmid mediated antibiotic resistance in marine bacteria. J Environ Biol 28:617–621

    CAS  Google Scholar 

  • Tsai HH, Shu HW, Yang CC, Chen CW (2012) Translesion-synthesis DNA polymerases participate in replication of the telomeres in Streptomyces. Nucleic Acids Res 40:1118–1130

    Article  CAS  Google Scholar 

  • Verma V, Qazi GN, Parshad R, Chopra CL (1989) Introduction of a Micrococcus plasmid in Escherichia coli. Plasmid 22:265–267

    Article  CAS  Google Scholar 

  • Verma V, Felder M, Redenbach M, Qazi GN, Cullum J (1993) Physical characterization of plasmid pMQV10 from a steroid biotransforming strain of Micrococcus. Plasmid 30:281–283

    Article  CAS  Google Scholar 

  • Votyakova TV, Kaprelyants AS, Kell DB (1994) Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase: the population effect. Appl Environ Microbiol 60:3284–3291

    CAS  Google Scholar 

  • Wagenknecht M, Meinhardt F (2011a) Copy number determination, expression analysis of genes potentially involved in replication, and stability assays of pAL1—the linear megaplasmid of Arthrobacter nitroguajacolicus Rü61a. Microbiol Res 166:14–26

    Article  CAS  Google Scholar 

  • Wagenknecht M, Meinhardt F (2011b) Replication-involved genes of pAL1, the linear plasmid of Arthrobacter nitroguajacolicus Rü61a—phylogenetic and transcriptional analysis. Plasmid 65:176–184

    Article  CAS  Google Scholar 

  • Wagenknecht M, Dib JR, Thürmer A, Daniel R, Farias ME, Meinhardt F (2010) Structural peculiarities of linear megaplasmid, pLMA1, from Micrococcus luteus interfere with pyrosequencing reads assembly. Biotechnol Lett 32:1853–1862

    Article  CAS  Google Scholar 

  • Weisblum B (1984) Inducible erythromycin resistance in bacteria. Br Med Bull 40:47–53

    CAS  Google Scholar 

  • Weisblum B (1985) Inducible resistance to macrolides, lincosamides, and streptogramin type-B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulated expression—a review. J Antimicrob Chemother 16(Suppl A):63–90

    Article  CAS  Google Scholar 

  • Wetmur JG, Davidson N, Scaletti JV (1966) Properties of DNA of bacteriophage N1, a DNA with reversible circularity. Biochem Biophys Res Commun 25:684–688

    Article  CAS  Google Scholar 

  • Wieser M, Denner EB, Kämpfer P, Schumann P, Tindall B, Steiner U, Vybiral D, Lubitz W, Maszenan AM, Patel BK, Seviour RJ, Radax C, Busse HJ (2002) Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 52:629–637

    CAS  Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    CAS  Google Scholar 

  • Wong MF, Chua H, Lo W, Leung CK, Yu PH (2001) Removal and recovery of copper (II) ions by bacterial biosorption. Appl Biochem Biotechnol 91–93:447–457

    Article  Google Scholar 

  • Yang CC, Huang CH, Li CY, Tsay YG, Lee SC, Chen CW (2002) The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol Microbiol 43:297–305

    Article  Google Scholar 

  • Yano S, Kamemura A, Yoshimune K, Moriguchi M, Yamamoto S, Tachiki T, Wakayama M (2006) Analysis of essential amino acid residues for catalytic activity of glutaminase from Micrococcus luteus K-3. J Biosci Bioeng 102:362–364

    Article  CAS  Google Scholar 

  • Yap RL, Mermel LA (2003) Micrococcus infection in patients receiving epoprostenol by continuous infusion. Eur J Clin Microbiol Infect Dis 22:704–705

    Article  CAS  Google Scholar 

  • Yoshimune K, Shirakihara Y, Shiratori A, Wakayama M, Chantawannakul P, Moriguchi M (2006) Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3. Biochem Biophys Res Commun 346:1118–1124

    Article  CAS  Google Scholar 

  • Young M, Artsatbanov V, Beller HR, Chandra G, Chater KF, Dover LG, Goh EB, Kahan T, Kaprelyants AS, Kyrpides N, Lapidus A, Lowry SR, Lykidis A, Mahillon J, Markowitz V, Mavromatis K, Mukamolova GV, Oren A, Rokem JS, Smith MC, Young DI, Greenblatt CL (2010) Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol 192:841–860

    Article  CAS  Google Scholar 

  • Zhang JY, Liu XY, Liu SJ (2010) Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:1897–1903

    Article  CAS  Google Scholar 

  • Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387

    Article  CAS  Google Scholar 

  • Zheng C, Qu B, Wang J, Zhou J, Wang J, Lu H (2009) Isolation and characterization of a novel nitrobenzene-degrading bacterium with high salinity tolerance: Micrococcus luteus. J Hazard Mater 165:1152–1158

    Article  CAS  Google Scholar 

  • Zhong Z, Caspi R, Mincer T, Helinski D, Knauf V, Boardman K, Wilkinson JE, Shea T, DeLoughery C, Toukdarian A (2002) A 50-kb plasmid rich in mobile gene sequences isolated from a marine Micrococcus. Plasmid 47:1–9

    Article  CAS  Google Scholar 

  • Zhuang WQ, Tay JH, Maszenan AM, Krumholz LR, Tay ST (2003a) Importance of Gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments. Lett Appl Microbiol 36:251–257

    Article  CAS  Google Scholar 

  • Zhuang WQ, Tay JH, Maszenan AM, Tay ST (2003b) Isolation of naphthalene-degrading bacteria from tropical marine sediments. Water Sci Technol 47:303–308

    CAS  Google Scholar 

Download references

Acknowledgments

JR Dib thanks the Alexander von Humboldt Foundation for the fellowship. Beate Schuhmacher, Angel Angelov (both Technische Universität München) and Ute Ludwig (Göttingen) are thanked for their assistance in the sequence analysis of pMEC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Meinhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dib, J.R., Liebl, W., Wagenknecht, M. et al. Extrachromosomal genetic elements in Micrococcus . Appl Microbiol Biotechnol 97, 63–75 (2013). https://doi.org/10.1007/s00253-012-4539-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4539-5

Keywords

Navigation