Skip to main content
Log in

Anticodon nuclease encoding virus-like elements in yeast

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A variety of yeast species are known to host systems of cytoplasmic linear dsDNA molecules that establish replication and transcription independent of the nucleus via self-encoded enzymes that are phylogenetically related to those encoded by true infective viruses. Such yeast virus-like elements (VLE) fall into two categories: autonomous VLEs encode all the essential functions for their inheritance, and additional, dependent VLEs, which may encode a toxin–antitoxin system, generally referred to as killer toxin and immunity. In the two cases studied in depth, killer toxin action relies on chitin binding and hydrophobic domains, together allowing a separate toxic subunit to sneak into the target cell. Mechanistically, the latter sabotages codon–anticodon interaction by endonucleolytic cleavage of specific tRNAs 3′ of the wobble nucleotide. This primary action provokes a number of downstream effects, including DNA damage accumulation, which contribute to the cell-killing efficiency and highlight the importance of proper transcript decoding capacity for other cellular processes than translation itself. Since wobble uridine modifications are crucial for efficient anticodon nuclease (ACNase) action of yeast killer toxins, the latter are valuable tools for the characterization of a surprisingly complex network regulating the addition of wobble base modifications in tRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bär C, Zabel R, Liu S, Stark MJ, Schaffrath R (2008) A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 69(5):1221–1233

    Google Scholar 

  • Beier CL, Horn M, Michel R, Schweikert M, Görtz HD, Wagner M (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68(12):6043–6050

    Article  CAS  Google Scholar 

  • Berry EA, Bevan EA (1972) A new species of double-stranded RNA from yeast. Nature 239(5370):279–280

    Article  CAS  Google Scholar 

  • Bevan EA, Makower M (1963) The physiological basis of the killer character in yeast. Proc 11th Int Congr Genet 1:202–203

    Google Scholar 

  • Bevan EA, Herring AJ, Mitchell DJ (1973) Preliminary characterization of two species of dsRNA in yeast and their relationship to the “killer” character. Nature 245(5420):81–86

    Article  CAS  Google Scholar 

  • Butler AR, O’Donnell RW, Martin VJ, Gooday GW, Stark MJ (1991a) Kluyveromyces lactis toxin has an essential chitinase activity. Eur J Biochem 199(2):483–488

    Article  CAS  Google Scholar 

  • Butler AR, Porter M, Stark MJ (1991b) Intracellular expression of Kluyveromyces lactis toxin γ subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant. Yeast 7(6):617–625

    Article  CAS  Google Scholar 

  • Butler AR, White JH, Folawiyo Y, Edlin A, Gardiner D, Stark MJ (1994) Two Saccharomyces cerevisiae genes which control sensitivity to G1 arrest induced by Kluyveromyces lactis toxin. Mol Cell Biol 14(9):6306–6316

    Article  CAS  Google Scholar 

  • Cascales E, Buchanan SK, Dúche D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71(1):158–229

    Article  CAS  Google Scholar 

  • Challberg MD, Kelly TJ Jr (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci U S A 76(2):655–659

    Article  CAS  Google Scholar 

  • Chen C, Huang B, Anderson JT, Byström AS (2011a) Unexpected accumulation of ncm5U and ncm5S2U in a trm9 mutant suggests an additional step in the synthesis of mcm5U and mcm5S2U. PLoS One 6(6):e20783

    Article  CAS  Google Scholar 

  • Chen C, Huang B, Eliasson M, Rydén P, Byström AS (2011b) Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 7(9):e1002258

    Article  CAS  Google Scholar 

  • Cong YS, Yarrow D, Li YY, Fukuhara H (1994) Linear DNA plasmids from Pichia etchellsii, Debaryomyces hansenii and Wingea robertsiae. Microbiology 140:1327–1335

    Article  CAS  Google Scholar 

  • Davidov E, Kaufmann G (2008) RloC: a wobble nucleotide-excising and zinc-responsive bacterial tRNase. Mol Microbiol 69(6):1560–1574

    Article  CAS  Google Scholar 

  • Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70(2):564–582

    Article  CAS  Google Scholar 

  • Dufour E, Rodriguez I, Lázaro JM, de Vega M, Salas M (2003) A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation. J Mol Biol 331(4):781–794

    Article  CAS  Google Scholar 

  • Ellis LF, Kleinschmidt WJ (1967) Virus-like particles of a fraction of statolon, a mould product. Nature 215(5101):649–650

    Article  CAS  Google Scholar 

  • Esberg A, Huang B, Johansson MJ, Byström AS (2006) Elevated levels of two tRNA species bypass the requirement for Elongator complex in transcription and exocytosis. Mol Cell 24(1):139–148

    Article  CAS  Google Scholar 

  • Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz D, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes: fundamentals and applications. Springer, Berlin, pp 7–26

    Google Scholar 

  • Fichtner L, Schaffrath R (2002) KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin. Mol Microbiol 44(3):865–875

    Article  CAS  Google Scholar 

  • Fichtner L, Frohloff F, Bürkner K, Larsen M, Breunig KD, Schaffrath R (2002a) Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 43(3):783–791

    Article  CAS  Google Scholar 

  • Fichtner L, Frohloff F, Jablonowski D, Stark MJ, Schaffrath R (2002b) Protein interactions within Saccharomyces cerevisiae Elongator, a complex essential for Kluyveromyces lactis zymocicity. Mol Microbiol 45(3):817–826

    Article  CAS  Google Scholar 

  • Fichtner L, Jablonowski D, Schierhorn A, Kitamoto HK, Stark MJ, Schaffrath R (2003) Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 49(5):1297–1307

    Article  CAS  Google Scholar 

  • Frohloff F, Fichtner L, Jablonowski D, Breunig KD, Schaffrath R (2001) Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J 20(8):1993–2003

    Article  CAS  Google Scholar 

  • Frohloff F, Jablonowski D, Fichtner L, Schaffrath R (2003) Subunit communications crucial for the functional integrity of the yeast RNA polymerase II Elongator (gamma-toxin target (TOT)) complex. J Biol Chem 278(2):956–961

    Article  CAS  Google Scholar 

  • Fukuda K, Maebuchi M, Takata H, Gunge N (1997) The linear plasmid pDHL1 from Debaryomyces hansenii encodes a protein highly homologous to the pGKL1-plasmid DNA polymerase. Yeast 13(7):613–620

    Article  CAS  Google Scholar 

  • Fukuhara H (1987) The RF1 gene of the killer DNA of yeast may encode a DNA polymerase. Nucleic Acids Res 15(23):10046

    Article  CAS  Google Scholar 

  • Fukuhara H (1995) Linear DNA plasmids of yeasts. FEMS Microbiol Lett 131(1):1–9

    Article  CAS  Google Scholar 

  • Futcher AB (1988) The 2 μm circle plasmid of Saccharomyces cerevisiae. Yeast 4(1):27–40

    Article  CAS  Google Scholar 

  • Golubev WI (2006) Antagonistic interactions among yeasts. In: Péter G, Rosa C (eds) The yeast handbook: biodiversity and ecophysiology of yeast. Springer, Berlin, pp 197–219

    Chapter  Google Scholar 

  • Gratia JP (2000) Andre Gratia: a forerunner in microbial and viral genetics. Genetics 156(2):471–476

    CAS  Google Scholar 

  • Gunge N, Kitada K (1988) Replication and maintenance of the Kluyveromyces linear pGKL plasmids. Eur J Epidemiol 4(4):409–414

    Article  CAS  Google Scholar 

  • Gunge N, Sakaguchi K (1981) Intergeneric transfer of deoxyribonucleic acid killer plasmids, pGKl1 and pGKl2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion. J Bacteriol 147(1):155–160

    CAS  Google Scholar 

  • Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol 145(1):382–390

    CAS  Google Scholar 

  • Hayman GT, Bolen PL (1991) Linear DNA plasmids of Pichia inositovora are associated with a novel killer toxin activity. Curr Genet 19(5):389–393

    Article  CAS  Google Scholar 

  • Héchard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84(5–6):545–557

    Article  Google Scholar 

  • Herring AJ, Bevan EA (1974) Virus-like particles associated with the double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. J Gen Virol 22(3):387–394

    Article  CAS  Google Scholar 

  • Hishinuma F, Hirai K (1991) Genome organization of the linear plasmid, pSKL, isolated from Saccharomyces kluyveri. Mol Gen Genet 226(1–2):97–106

    Article  CAS  Google Scholar 

  • Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast. Nucleic Acids Res 12(19):7581–7597

    Article  CAS  Google Scholar 

  • Huang B, Johansson MJ, Byström AS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11(4):424–436

    Article  CAS  Google Scholar 

  • Huang B, Lu J, Byström AS (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14(10):2183–2194

    Article  CAS  Google Scholar 

  • Jablonowski D, Fichtner L, Martin VJ, Klassen R, Meinhardt F, Stark MJ, Schaffrath R (2001) Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor. Yeast 18(14):1285–1299

    Article  CAS  Google Scholar 

  • Jablonowski D, Fichtner L, Stark MJ, Schaffrath R (2004) The yeast elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Mol Biol Cell 15(3):1459–1469

    Article  CAS  Google Scholar 

  • Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 59(2):677–688

    Article  CAS  Google Scholar 

  • Jain R, Poulos MG, Gros J, Chakravarty AK, Shuman S (2011) Substrate specificity and mutational analysis of Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 17(7):1336–1343

    Article  CAS  Google Scholar 

  • Jeske S, Meinhardt F (2006) Autonomous cytoplasmic linear plasmid pPac1-1 of Pichia acaciae: molecular structure and expression studies. Yeast 23(6):479–486

    Article  CAS  Google Scholar 

  • Jeske S, Tiggemann M, Meinhardt F (2006) Yeast autonomous linear plasmid pGKL2: ORF9 is an actively transcribed essential gene with multiple transcription start points. FEMS Microbiol Lett 255(2):321–327

    Article  CAS  Google Scholar 

  • Jeske S, Meinhardt F, Klassen R (2007) Extranuclear inheritance: virus-like DNA-elements in yeast. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 68. Springer, Berlin, pp 98–129

    Chapter  Google Scholar 

  • Johansson MJ, Esberg A, Huang B, Björk GR, Byström AS (2008) Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28(10):3301–3312

    Article  CAS  Google Scholar 

  • Jung GH, Leavitt MC, Ito J (1987) Yeast killer plasmid pGKL1 encodes a DNA polymerase belonging to the family B DNA polymerases. Nucleic Acids Res 15(21):9088

    Article  CAS  Google Scholar 

  • Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23(24):9283–9292

    Article  CAS  Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989a) In vivo construction of linear vectors based on killer plasmids from Kluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres. Mol Cell Biol 9(9):3931–3937

    Google Scholar 

  • Kämper J, Meinhardt F, Gunge N, Esser K (1989b) New recombinant linear DNA-elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res 17(4):1781

    Article  Google Scholar 

  • Kaufmann G (2000) Anticodon nucleases. Trends Biochem Sci 25(2):70–74

    Article  CAS  Google Scholar 

  • Kempken F, Meinhardt F, Esser K (1989) In organello replication and viral affinity of linear, extrachromosomal DNA of the ascomycete Ascobolus immersus. Mol Gen Genet 218(3):523–530

    Article  CAS  Google Scholar 

  • Keppetipola N, Jain R, Meineke B, Diver M, Shuman S (2009) Structure-activity relationships in Kluyveromyces lactis γ-toxin, a eukaryal tRNA anticodon nuclease. RNA 15(6):1036–1044

    Article  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2002) Linear plasmids pWR1A and pWR1B of the yeast Wingea robertsiae are associated with a killer phenotype. Plasmid 48(2):142–148

    Article  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2003) Structural and functional analysis of the killer element pPin1-3 from Pichia inositovora. Mol Genet Genomics 270(2):190–199

    Article  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2005) Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cell Microbiol 7(3):393–401

    Article  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2007) Linear protein-primed replicating plasmids in eukaryotic microbes. In: Meinhardt F, Klassen R (eds) Microbiology monographs. Microbial linear plasmids, vol 7. Springer, Berlin, pp 187–226

    Chapter  Google Scholar 

  • Klassen R, Tontsidou L, Larsen M, Meinhardt F (2001) Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 18(10):953–961

    Article  CAS  Google Scholar 

  • Klassen R, Jablonowski D, Schaffrath R, Meinhardt F (2002) Genome organization of the linear Pichia etchellsii plasmid pPE1A: evidence for expression of an extracellular chitin-binding protein homologous to the α-subunit of the Kluyveromyces lactis killer toxin. Plasmid 47(3):224–233

    Article  CAS  Google Scholar 

  • Klassen R, Teichert S, Meinhardt F (2004) Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation. Mol Microbiol 53(1):263–273

    Article  CAS  Google Scholar 

  • Klassen R, Krampe S, Meinhardt F (2007) Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae. DNA Repair (Amst) 6(12):1864–1875

    Article  CAS  Google Scholar 

  • Klassen R, Paluszynski JP, Wemhoff S, Pfeiffer A, Fricke J, Meinhardt F (2008) The primary target of the killer toxin from Pichia acaciae is tRNA(Gln). Mol Microbiol 69(3):681–697

    Article  CAS  Google Scholar 

  • Klassen R, Wemhoff S, Krause J, Meinhardt F (2011) DNA repair defects sensitize cells to anticodon nuclease yeast killer toxins. Mol Genet Genomics 285(3):185–195

    Article  CAS  Google Scholar 

  • Larsen M, Meinhardt F (2000) Kluyveromyces lactis killer system: identification of a new gene encoded by pGKL2. Curr Genet 38(5):271–275

    Article  CAS  Google Scholar 

  • Larsen M, Gunge N, Meinhardt F (1998) Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3. Plasmid 40(3):243–246

    Article  CAS  Google Scholar 

  • Levitz R, Chapman D, Amitsur M, Green R, Snyder L, Kaufmann G (1990) The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J 9(5):1383–1389

    CAS  Google Scholar 

  • Li Q, Fazly AM, Zhou H, Huang S, Zhang Z, Stillman B (2009) The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents. PLoS Genet 5(10):e1000684

    Article  CAS  Google Scholar 

  • Ligon JM, Bolen PL, Hill DS, Bothast RJ, Kurtzman CP (1989) Physical and biological characterization of linear DNA plasmids of the yeast Pichia inositovora. Plasmid 21(3):185–194

    Article  CAS  Google Scholar 

  • Lu J, Huang B, Esberg A, Johansson MJ, Byström AS (2005) The Kluyveromyces lactis γ-toxin targets tRNA anticodons. RNA 11(11):1648–1654

    Article  CAS  Google Scholar 

  • Ludwig DL, Bruschi CV (1991) The 2-μm plasmid as a nonselectable, stable, high copy number yeast vector. Plasmid 25(2):81–95

    Article  CAS  Google Scholar 

  • Ludwig DL, Ugolini S, Bruschi CV (1993) High-level heterologous gene expression in Saccharomyces cerevisiae from a stable 2 μm plasmid system. Gene 132(1):33–40

    Article  CAS  Google Scholar 

  • Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L (1997) Yeast killer systems. Clin Microbiol Rev 10(3):369–400

    CAS  Google Scholar 

  • Masaki H, Ogawa T (2002) The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie 84(5–6):433–438

    Article  CAS  Google Scholar 

  • Mazauric MH, Dirick L, Purushothaman SK, Björk GR, Lapeyre B (2010) Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. J Biol Chem 285(24):18505–18515

    Article  CAS  Google Scholar 

  • McCracken DA, Martin VJ, Stark MJ, Bolen PL (1994) The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin of Kluyveromyces lactis. Microbiology 140:425–431

    Article  CAS  Google Scholar 

  • McNeel DG, Tamanoi F (1991) Terminal region recognition factor 1, a DNA-binding protein recognizing the inverted terminal repeats of the pGKl linear DNA plasmids. Proc Natl Acad Sci U S A 88(24):11398–11402

    Article  CAS  Google Scholar 

  • Mehlgarten C, Schaffrath R (2004) After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Cell Microbiol 6(6):569–580

    Article  CAS  Google Scholar 

  • Mehlgarten C, Jablonowski D, Breunig KD, Stark MJ, Schaffrath R (2009) Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 73(5):869–881

    Article  CAS  Google Scholar 

  • Meijer WJ, Horcajadas JA, Salas M (2001) Φ29 family of phages. Microbiol Mol Biol Rev 65(2):261–287

    Article  CAS  Google Scholar 

  • Meineke B, Kast A, Schwer B, Meinhardt F, Shuman S, Klassen R (2012) A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair. RNA. doi:10.1261/rna.034132.112

  • Meinhardt F, Klassen R (2009) Yeast killer toxins: fundamentals and applications. In: Anke T, Weber D (eds) The Mycota. Physiology and genetics, vol XV. Springer, Berlin, pp 107–130

    Chapter  Google Scholar 

  • Meinhardt F, Rohe M (1993) Extranuclear inheritance: linear protein-primed replicating genomes in plants and microorganisms. In: Behnke HD (ed) Progress in botany, vol 54. Springer, Berlin, pp 334–357

    Google Scholar 

  • Meinhardt F, Schaffrath R (2001) Extranuclear inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeast Kluyveromyces lactis. In: Esser K (ed) Progress in botany, vol 62. Springer, Berlin, pp 51–70

    Google Scholar 

  • Meinhardt F, Kempken F, Esser K (1986) Proteins are attached to the ends of a linear plasmid in the filamentous fungus Ascobolus immersus. Curr Genet 11(3):243–246

    Article  CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17(2):89–95

    Article  CAS  Google Scholar 

  • Nandakumar J, Schwer B, Schaffrath R, Shuman S (2008) RNA repair: an antidote to cytotoxic eukaryal RNA damage. Mol Cell 31(2):278–286

    Article  CAS  Google Scholar 

  • Nissen-Meyer J, Nes IF (1997) Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol 167(2–3):67–77

    Article  CAS  Google Scholar 

  • Ogawa T, Tomita K, Ueda T, Watanabe K, Uozumi T, Masaki H (1999) A cytotoxic ribonuclease targeting specific transfer RNA anticodons. Science 283(5410):2097–2100

    Article  CAS  Google Scholar 

  • Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3(1):109–118

    Article  CAS  Google Scholar 

  • Paluszynski JP, Klassen R, Meinhardt F (2007) Pichia acaciae killer system: genetic analysis of toxin immunity. Appl Environ Microbiol 73(13):4373–4378

    Article  CAS  Google Scholar 

  • Pond FR, Gibson I, Lalucat J, Quackenbush RL (1989) R-body-producing bacteria. Microbiol Rev 53(1):25–67

    CAS  Google Scholar 

  • Preer JR Jr, Preer LB, Jurand A (1974) Kappa and other endosymbionts in Paramecium aurelia. Bacteriol Rev 38(2):113–163

    CAS  Google Scholar 

  • Riley MA, Chavan MA (2007) Bacteriocins: ecology and evolution. Springer, Berlin

    Book  Google Scholar 

  • Rohe M, Schründer J, Tudzynski P, Meinhardt F (1992) Phylogenetic relationships of linear, protein-primed replicating genomes. Curr Genet 21(2):173–176

    Article  CAS  Google Scholar 

  • Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60:39–71

    Article  CAS  Google Scholar 

  • Satwika D, Klassen R, Meinhardt F (2012) Repeated capture of a cytoplasmic linear plasmid by the host nucleus in Debaryomyces hansenii. Yeast 29(3–4):145–154

    Article  CAS  Google Scholar 

  • Schaffrath R, Meacock PA (1995) Kluyveromyces lactis killer plasmid pGKL2: molecular analysis of an essential gene, ORF5. Yeast 11(7):615–628

    Article  CAS  Google Scholar 

  • Schaffrath R, Meacock PA (2001) An SSB encoded by and operating on linear killer plasmids from Kluyveromyces lactis. Yeast 18(13):1239–1247

    Article  CAS  Google Scholar 

  • Schaffrath R, Meinhardt F (2005) Kluyveromyces lactis zymocin and other plasmid-encoded yeast killer toxins. In: Schmitt M, Schaffrath R (eds) Topics in current genetics, vol 11. Springer, Berlin, pp 337–352

    Google Scholar 

  • Schaffrath R, Stark MJ, Gunge N, Meinhardt F (1992) Kluyveromyces lactis killer system: ORF1 of pGKL2 has no function in immunity expression and is dispensable for killer plasmid replication and maintenance. Curr Genet 21(4–5):357–363

    Article  CAS  Google Scholar 

  • Schaffrath R, Soond SM, Meacock PA (1995) The DNA and RNA polymerase genes of yeast plasmid pGKL2 are essential loci for plasmid integrity and maintenance. Microbiology 141:2591–2599

    Article  CAS  Google Scholar 

  • Schaffrath R, Meinhardt F, Meacock PA (1996) Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. Mol Gen Genet 250(3):286–294

    Article  CAS  Google Scholar 

  • Schaffrath R, Meinhardt F, Meacock PA (1997) ORF7 of yeast plasmid pGKL2: analysis of gene expression in vivo. Curr Genet 31(2):190–192

    Article  CAS  Google Scholar 

  • Schickel J, Helmig C, Meinhardt F (1996) Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of the linear plasmids. Nucleic Acids Res 24(10):1879–1886

    Article  CAS  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4(3):212–221

    Article  CAS  Google Scholar 

  • Schrallhammer M (2010) The killer trait of Paramaecium and its causative agents. Palaeodiversity 3(Supplement):79–88

    Google Scholar 

  • Sinclair JH, Stevens BJ, Sanghavi P, Rabinowitz M (1967) Mitochondrial-satellite and circular DNA filaments in yeast. Science 156(3779):1234–1237

    Article  CAS  Google Scholar 

  • Sonneborn T (1938) Mating types in Paramecium aurelia: diverse conditions for mating in different stocks; occurrence, number and interrelations of the types. Proc Am Philos Soc 79:411–434

    Google Scholar 

  • Sor F, Fukuhara H (1985) Structure of a linear plasmid of the yeast Kluyveromyces lactis; compact organization of the killer genome. Curr Genet 9:147–155

    Article  CAS  Google Scholar 

  • Stark MJ (1988) Resolution of sequence discrepancies in the ORF1 region of the Kluyveromyces lactis plasmid k1. Nucleic Acids Res 16(2):771

    Article  CAS  Google Scholar 

  • Stark MJ, Boyd A (1986) The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5(8):1995–2002

    CAS  Google Scholar 

  • Stark MJ, Mileham AJ, Romanos MA, Boyd A (1984) Nucleotide sequence and transcription analysis of a linear DNA plasmid associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res 12(15):6011–6030

    Article  CAS  Google Scholar 

  • Stark MJ, Boyd A, Mileham AJ, Romanos MA (1990) The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6(1):1–29

    Article  CAS  Google Scholar 

  • Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, Schaffrath R (2008) tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol 69(5):1266–1277

    Article  CAS  Google Scholar 

  • Thompson DM, Parker R (2009) Stressing out over tRNA cleavage. Cell 138(2):215–219

    Article  CAS  Google Scholar 

  • Tiggemann M, Jeske S, Larsen M, Meinhardt F (2001) Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast 18(9):815–825

    Article  CAS  Google Scholar 

  • Tokunaga M, Wada N, Hishinuma F (1987) Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res 15(3):1031–1046

    Article  CAS  Google Scholar 

  • Tokunaga M, Kawamura A, Hishinuma F (1989) Expression of pGKL killer 28K subunit in Saccharomyces cerevisiae: identification of 28K subunit as a killer protein. Nucleic Acids Res 17(9):3435–3446

    Article  CAS  Google Scholar 

  • Tommasino M, Ricci S, Galeotti CL (1988) Genome organization of the killer plasmid pGK12 from Kluyveromyces lactis. Nucleic Acids Res 16(13):5863–5878

    Article  CAS  Google Scholar 

  • Uthman S, Kheir E, Bär C, Jablonowski D, Schaffrath R (2011) Growth inhibition strategies based on antimicrobial microbes/toxins. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances, vol 2. Formatex Research Center, Badajoz, pp 1321–1329

    Google Scholar 

  • Velmurugan S, Mehta S, Jayaram M (2003) Selfishness in moderation: evolutionary success of the yeast plasmid. Curr Top Dev Biol 56:1–24

    Article  CAS  Google Scholar 

  • Wilson DW, Meacock PA (1988) Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res 16(16):8097–8112

    CAS  Google Scholar 

  • Worsham PL, Bolen PL (1990) Killer toxin production in Pichia acaciae is associated with linear DNA plasmids. Curr Genet 18(1):77–80

    Article  CAS  Google Scholar 

  • Zhabokritsky A, Kutky M, Burns LA, Karran RA, Hudak KA (2011) RNA toxins: mediators of stress adaptation and pathogen defense. Wiley Interdiscip Rev RNA 2(6):890–903

    Article  CAS  Google Scholar 

  • Zink S, Mehlgarten C, Kitamoto HK, Nagase J, Jablonowski D, Dickson RC, Stark MJ, Schaffrath R (2005) Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin. Eukaryot Cell 4(5):879–889

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support for DS by the Directorate General of Higher Education (DIKTI), Indonesia, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Meinhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satwika, D., Klassen, R. & Meinhardt, F. Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 96, 345–356 (2012). https://doi.org/10.1007/s00253-012-4349-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4349-9

Keywords

Navigation