Skip to main content
Log in

Monolithic columns in plant proteomics and metabolomics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since “omics” techniques emerged, plant studies, from biochemistry to ecology, have become more comprehensive. Plant proteomics and metabolomics enable the construction of databases that, with the help of genomics and informatics, show the data obtained as a system. Thus, all the constituents of the system can be seen with their interactions in both space and time. For instance, perturbations in a plant ecosystem as a consequence of application of herbicides or exposure to pollutants can be predicted by using information gathered from these databases. Analytical chemistry has been involved in this scientific evolution. Proteomics and metabolomics are emerging fields that require separation, identification, and quantification of proteins, peptides, and small molecules of metabolites in complex biological samples. The success of this work relies on efficient chromatographic and electrophoretic techniques, and on mass spectrometric detection. This paper reviews recent developments in the use of monolithic columns, focusing on their applications in “top-down” and “bottom-up” approaches, including their use as supports for immobilization of proteolytic enzymes and their use in two-dimensional and multidimensional chromatography. Whereas polymeric columns have been predominantly used for separation of proteins and polypeptides, silica-based monoliths have been more extensively used for separation of small molecules of metabolites. Representative applications in proteomics and in analysis of plant metabolites are given and summarized in tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: Systems biology. Annu Rev Genom Hum Genet 2:343–372. doi:10.1146/annurev.genom.2.1.343

    Google Scholar 

  2. Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15(1):45–50. doi:10.1016/j.tim.2006.11.003

    Google Scholar 

  3. Fukusaki E, Kobayashi A (2005) Plant meta-bolomics: Potential for practical operation. J Biosci Bioeng 100(4):347–354. doi:10.1263/jbb.100.347

    Google Scholar 

  4. Zhang X, Fang AQ, Riley CP, Wang M, Regnier FE, Buck C (2010) Multi-dimensional liquid chromatography in proteomics—A review. Anal Chim Acta 664(2):101–113. doi:10.1016/j.aca.2010.02.001

    Google Scholar 

  5. Hufnagel P, Rabus R (2006) Mass spectrometric identification of proteins in complex post-genomic projects—Soluble proteins of the metabolically versatile, denitrifying ‘Aromatoleum’ sp strain EbN1. J Mol Microbiol Biotechnol 11(1–2):53–81. doi:10.1159/000092819

    Google Scholar 

  6. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214. doi:10.1038/nmeth1019

    Google Scholar 

  7. Wienkoop S, Larrainzar E, Niemann M, Gonzalez EM, Lehmann U, Weckwerth W (2006) Stable isotope-free quantitative shotgun proteomics combined with sample pattern recognition for rapid diagnostics. J Sep Sci 29(18):2793–2801. doi:10.1002/jssc.200600290

    Google Scholar 

  8. Glinski M, Weckwerth W (2006) The role of mass spectrometry in plant systems biology. Mass Spectrom Rev 25(2):173–214. doi:10.1002/mas.20063

    Google Scholar 

  9. Oeljeklaus S, Meyer HE, Warscheid B (2009) Advancements in plant proteomics using quantitative mass spectrometry. J Proteomics 72(3):545–554. doi:10.1016/j.jprot.2008.11.008

    Google Scholar 

  10. Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28(1):93–120. doi:10.1002/mas.20183

  11. Matros A, Kaspar S, Witzel K, Mock HP (2011) Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. Phytochemistry 72(10):963–974. doi:10.1016/j.phytochem.2010.11.009

    Google Scholar 

  12. Jungblut P, Thiede B (1997) Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom Rev 16(3):145–162. doi:10.1002/(sici)1098-2787(1997)16:3<145::aid-mas2>3.0.co;2-h

  13. Klose J, Kobalz U (1995) 2-Dimensional electrophoresis of proteins - an updated protocol and implications for a functional-analysis of the genome. Electrophoresis 16(6):1034–1059. doi:10.1002/elps.11501601175

    Google Scholar 

  14. Brechlin P, Jahn O, Steinacker P, Cepek L, Kratzin H, Lehnert S, Jesse S, Mollenhauer B, Kretzschmar HA, Wiltfang J, Otto M (2008) Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt–Jakob disease. Proteomics 8(20):4357–4366. doi:10.1002/pmic.200800375

    Google Scholar 

  15. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17(7):676–682

    Google Scholar 

  16. Brewis IA, Brennan P (2010) Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol 80:1–44. doi:10.1016/s1876-1623(10)80001-x

    Google Scholar 

  17. Wu Q, Yuan HM, Zhang LH, Zhang YK (2012) Recent advances on multidimensional liquid chromatography–mass spectrometry for proteomics: From qualitative to quantitative analysis-A review. Anal Chim Acta 731:1–10. doi:10.1016/j.aca.2012.04.010

    Google Scholar 

  18. Bindschedler LV, Cramer R (2011) Fully automated software solution for protein quantitation by global metabolic labeling with stable isotopes. Rapid Comm Mass Spectrom 25(11):1461–1471. doi:10.1002/rcm.4872

    Google Scholar 

  19. Schulze WX, Usadel B (2010) Quantitation in Mass-Spectrometry-Based Proteomics. Annu Rev Plant Biol 61(61):491–516. doi:10.1146/annurev-arplant-042809-112132

    Google Scholar 

  20. Capriotti AL, Cavaliere C, Foglia P, Samperi R, Lagana A (2011) Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics. J Chromatogr A 1218(49):8760–8776. doi:10.1016/j.chroma.2011.05.094

    Google Scholar 

  21. McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP (2007) Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J 274(24):6256–6268. doi:10.1111/j.1742-4658.2007.06147.x

    Google Scholar 

  22. Ge Y, Lawhorn BG, ElNaggar M, Strauss E, Park JH, Begley TP, McLafferty FW (2002) Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J Am Chem Soc 124(4):672–678. doi:10.1021/ja011335z

    Google Scholar 

  23. Hall Q, Cannon MC (2002) The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 14(5):1161–1172. doi:10.1105/tpc.010477

    Google Scholar 

  24. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689. doi:10.1146/annurev.arplant.54.031902.135014

    Google Scholar 

  25. Koal T, Deigner HP (2010) Challenges in Mass Spectrometry Based Targeted Metabolomics. Curr Mol Med 10(2):216–226

    Google Scholar 

  26. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70(1):39–50. doi:10.1111/j.1365-313X.2012.04902.x

    Google Scholar 

  27. Fiehn O (2002) Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171. doi:10.1023/a:1013713905833

  28. Lei Z, Huhman DV, Sumner LW (2011) Mass Spectrometry Strategies in Metabolomics. J Biol Chem 286(29):25435–25442. doi:10.1074/jbc.R111.238691

    Google Scholar 

  29. Weckwerth W (2008) Integration of metabolomics and proteomics in molecular plant physiology - coping with the complexity by data-dimensionality reduction. Physiol Plant 132(2):176–189. doi:10.1111/j.1399-3054.2007.01011.x

  30. Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T, Sucaet Y, Barkan L, Wohlgemuth G, Roth MR, Wurtele ES, Dixon P, Fiehn O, Lange BM, Shulaev V, Sumner LW, Welti R, Nikolau BJ, Rhee SY, Dickerson JA (2010) PlantMetabolomics.org: A Web Portal for Plant Metabolomics Experiments. Plant Physiol 152(4):1807–1816. doi:10.1104/pp.109.151027

  31. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9(9):418–425. doi:10.1016/j.tplants.2004.07.004

    Google Scholar 

  32. Hegeman AD (2010) Plant metabolomics-meeting the analytical challenges of comprehensive metabolite analysis. Briefings Funct Genom 9(2):139–148. doi:10.1093/bfgp/elp053

  33. Kind T, Scholz M, Fiehn O (2009) How Large Is the Metabolome? A Critical Analysis of Data Exchange Practices in Chemistry. PLoS One 4(5):doi:10.1371/journal.pone.0005440

  34. Ogata Y, Chikayama E, Morioka Y, Everroad RC, Shino A, Matsushima A, Haruna H, Moriya S, Toyoda T, Kikuchi J (2012) ECOMICS: A Web-Based Toolkit for Investigating the Biomolecular Web in Ecosystems Using a Trans-omics Approach. PLoS One 7(2):doi:10.1371/journal.pone.0030263

    Article  Google Scholar 

  35. Weckwerth W (2011) Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75(1):284–305. doi:10.1016/j.jprot.2011.07.010

    Article  CAS  Google Scholar 

  36. Saito K, Matsuda F (2010) Metabolomics for Functional Genomics, Systems Biology, and Biotechnology. Annu Rev Plant Biol 61(61):463–489. doi:10.1146/annurev.arplant.043008.092035

    Article  CAS  Google Scholar 

  37. Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2009) Integrated omics approaches in plant systems biology. Curr Op Chem Biol 13(5–6):532–538. doi:10.1016/j.cbpa.2009.09.022

    Article  CAS  Google Scholar 

  38. Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132(2):199–208. doi:10.1111/j.1399-3054.2007.01025.x

    Article  CAS  Google Scholar 

  39. Goulitquer S, Potin P, Tonon T (2012) Mass Spectrometry-Based Metabolomics to Elucidate Functions in Marine Organisms and Ecosystems. Mar Drug 10(4):849–880. doi:10.3390/md10040849

    Article  CAS  Google Scholar 

  40. Veldhoen N, Ikonomou MG, Helbing CC (2012) Molecular profiling of marine fauna: Integration of omics with environmental assessment of the world’s oceans. Ecotoxicol Environ Saf 76:23–38. doi:10.1016/j.ecoenv.2011.10.005

    Article  CAS  Google Scholar 

  41. McKnight SL (2009) Unconventional Wisdom. Cell 138(5):817–819. doi:10.1016/j.cell.2009.08.016

    Article  CAS  Google Scholar 

  42. Unger KK, Skudas R, Schulte MM (2008) Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. J Chromatogr A 1184(1–2):393–415. doi:10.1016/j.chroma.2007.11.118

    CAS  Google Scholar 

  43. Unger KK, Liapis AI (2012) Adsorbents and columns in analytical high-performance liquid chromatography: A perspective with regard to development and understanding. J Sep Sci 35(10–11):1201–1212. doi:10.1002/jssc.201200042

    Google Scholar 

  44. Kirkland JJ, Langlois TJ, Kirkland J, Langlois T Microparticle for packed bed of high performance liquid chromatography column, comprises solid core, and outer porous shell comprising colloidal inorganic nanoparticles. US2007189944-A1; WO2007095162-A2; WO2007095158-A2; WO2007095162-A3; WO2007095158-A3; EP1991203-A2; EP1999294-A2

  45. Hjerten S, Li YM, Liao JL, Mohammad J, Nakazato K, Pettersson G (1992) Continuous beds - high-resolving, cost-effective chromatographic matrices. Nature 356(6372):810–811. doi:10.1038/356810a0

    Article  Google Scholar 

  46. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 68(19):3498–3501. doi:10.1021/ac960281m

    Article  CAS  Google Scholar 

  47. Švec F, Tennikova TB, Deyl Ze (2003) Monolithic materials: preparation, properties, and applications. Journal of chromatography library, vol 67, 1st edn. Elsevier, Amsterdam; Boston

  48. Aggarwal P, Tolley HD, Lee ML (2012) Monolithic bed structure for capillary liquid chromatography. J Chromatogr A 1219:1–14. doi:10.1016/j.chroma.2011.10.083

    Article  CAS  Google Scholar 

  49. Svec F (2010) Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217(6):902–924. doi:10.1016/j.chroma.2009.09.073

    Article  CAS  Google Scholar 

  50. Vlakh EG, Tennikova TB (2009) Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. J Chromatogr A 1216(13):2637–2650. doi:10.1016/j.chroma.2008.09.090

    Article  CAS  Google Scholar 

  51. Urban J, Jandera P (2008) Polymethacrylate monolithic columns for capillary liquid chromatography. J Sep Sci 31(14):2521–2540. doi:10.1002/jssc.200800182

    Google Scholar 

  52. Arrua RD, Talebi M, Causon TJ, Hilder EF (2012) Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal Chim Acta 738:1–12. doi:10.1016/j.aca.2012.05.052

    Article  CAS  Google Scholar 

  53. Svec F (2012) Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J Chromatogr A 1228:250–262. doi:10.1016/j.chroma.2011.07.019

    Article  CAS  Google Scholar 

  54. Nischang I, Teasdale I, Bruggemann O (2011) Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 400(8):2289–2304. doi:10.1007/s00216-010-4579-6

    Article  CAS  Google Scholar 

  55. Urban J, Jandera P, Langmaier P (2011) Effects of functional monomers on retention behavior of small and large molecules in monolithic capillary columns at isocratic and gradient conditions. J Sep Sci 34(16–17):2054–2062. doi:10.1002/jssc.201100174

    Google Scholar 

  56. Urban J, Svec F, Frechet JMJ (2010) Efficient Separation of Small Molecules Using a Large Surface Area Hypercrosslinked Monolithic Polymer Capillary Column. Anal Chem 82(5):1621–1623. doi:10.1021/ac100008n

    Article  CAS  Google Scholar 

  57. Chambers SD, Svec F, Frechet JMJ (2011) Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J Chromatogr A 1218(18):2546–2552. doi:10.1016/j.chroma.2011.02.055

    Article  CAS  Google Scholar 

  58. Li Y, Chen Y, Xiang R, Ciuparu D, Pfefferle LD, Horwath C, Wilkins JA (2005) Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for mu-HPLC and capillary electrochromatography. Anal Chem 77(5):1398–1406. doi:10.1021/ac048299h

    Article  CAS  Google Scholar 

  59. Skudas R, Grimes BA, Machtejevas E, Kudirkaite V, Kornysova O, Hennessy TP, Lubda D, Unger KK (2007) Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. J Chromatogr A 1144(1):72–84. doi:10.1016/j.chroma.2006.09.096

    Article  CAS  Google Scholar 

  60. Vujcic S, Ferrer IM, Rivera JG, Li L, Colon LA (2011) New Approaches to Monolithic Columns. In: Helburn R, Vitha MF (eds) Interfaces and Interphases in Analytical Chemistry, vol 1062. ACS Symposium Series. pp 123–139

  61. Rozenbrand J, van Bennekom WP (2011) Silica-based and organic monolithic capillary columns for LC: Recent trends in proteomics. J Sep Sci 34(16–17):1934–1944. doi:10.1002/jssc.201100294

    Google Scholar 

  62. Maruska A, Kornysova O (2006) Application of monolithic (continuous bed) chromatographic columns in phytochemical analysis. J Chromatogr A 1112(1–2):319–330. doi:10.1016/j.chroma.2006.01.099

    CAS  Google Scholar 

  63. Tolstikov VV, Lommen A, Nakanishi K, Tanaka N, Fiehn O (2003) Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Anal Chem 75(23):6737–6740. doi:10.1021/ac034716z

    Article  CAS  Google Scholar 

  64. Yang FQ, Zhao J, Li SP (2010) CEC of phytochemical bioactive compounds. Electrophoresis 31(1):260–277. doi:10.1002/elps.200900570

    Google Scholar 

  65. Rozenbrand J, de Jong GJ, van Bennekom WP (2011) Comparison of monolithic and 1.8-mu m RP-18 silica capillary columns using chromatographic data and mass spectrometric identification scores for proteins. J Sep Sci 34(16–17):2199–2205. doi:10.1002/jssc.201100151

    Google Scholar 

  66. Rivera JG, Choi YS, Vujcic S, Wood TD, Colon LA (2009) Enrichment/isolation of phosphorylated peptides on hafnium oxide prior to mass spectrometric analysis. Analyst 134(1):31–33. doi:10.1039/b813162g

    Article  CAS  Google Scholar 

  67. Wang XL, Stoll DR, Schellinger AP, Carr PW (2006) Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: Fixed column format. Anal Chem 78(10):3406–3416. doi:10.1021/ac0600149

    Article  CAS  Google Scholar 

  68. Vaast A, Broeckhoven K, Dolman S, Desmet G, Eeltink S (2012) Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 mu m porous and 2.7 mu m fused-core silica particles. J Chromatogr A 1228:270–275. doi:10.1016/j.chroma.2011.07.089

    Article  CAS  Google Scholar 

  69. Stoll DR, Li XP, Wang XO, Carr PW, Porter SEG, Rutan SC (2007) Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 1168(1–2):3–43. doi:10.1016/j.chroma.2007.08.054

    CAS  Google Scholar 

  70. Morisaka H, Kirino A, Kobayashi K, Ueda M (2012) Two-Dimensional Protein Separation by the HPLC System with a Monolithic Column. Biosci Biotechnol Biochem 76(3):585–588. doi:10.1271/bbb.110770

    Article  CAS  Google Scholar 

  71. Morisaka H, Hata K, Mima J, Tanigawa T, Furuno M, Ishizuka N, Tanaka N, Ueda M (2006) Enhanced sequence coverage in tryptic fragment analysis by two-dimensional HPLC/MS using a monolithic silica capillary column. Biosci Biotechnol Biochem 70(9):2154–2159. doi:10.1271/bbb.60115

    Article  CAS  Google Scholar 

  72. Eeltink S, Dolman S, Vivo-Truyols G, Schoenmakers P, Swart R, Ursem M, Desmet G (2010) Selection of Column Dimensions and Gradient Conditions to Maximize the Peak-Production Rate in Comprehensive Off-Line Two-Dimensional Liquid Chromatography Using Monolithic Columns. Anal Chem 82(16):7015–7020. doi:10.1021/ac101514d

    Article  CAS  Google Scholar 

  73. Hajek T, Skerikova V, Cesla P, Vynuchalova K, Jandera P (2008) Multidimensional LC x LC analysis of phenolic and flavone natural antioxidants with UV–electrochemical coulometric and MS detection. J Sep Sci 31(19):3309–3328. doi:10.1002/jssc.200800249

    Google Scholar 

  74. Dugo P, Favoino O, Luppino R, Dugo G, Mondello L (2004) Comprehensive two-dimensional normal-phase (adsorption) - Reversed-phase liquid chromatography. Anal Chem 76(9):2525–2530. doi:10.1021/a0352981

    Article  CAS  Google Scholar 

  75. Dugo P, Skerikova V, Kumm T, Trozzi A, Jandera P, Mondello L (2006) Elucidation of carotenoid patterns in citrus products by means of comprehensive normal-phase x reversed-phase liquid chromatography. Anal Chem 78(22):7743–7750. doi:10.1021/ac061290q

    Article  CAS  Google Scholar 

  76. Dugo P, Herrero M, Kumm T, Giuffrida D, Dugo G, Mondello L (2008) Comprehensive normal-phase x reversed-phase liquid chromatography coupled to photodiode array and mass spectrometry detection for the analysis of free carotenoids and carotenoid esters from mandarin. J Chromatogr A 1189(1–2):196–206. doi:10.1016/j.chroma.2007.11.116

    CAS  Google Scholar 

  77. Zhang Z, Lin H, Ou J, Qin H, Ra W, Dong J, Zou H (2012) Preparation of phenyl-silica hybrid monolithic column with “one-pot” process for capillary liquid chromatography. J Chromatogr A 1228:263–269. doi:10.1016/j.chroma.2011.07.048

    Article  CAS  Google Scholar 

  78. Lin H, Ou J, Zhang Z, Dong J, Wu M, Zou H (2012) Facile Preparation of Zwitterionic Organic-Silica Hybrid Monolithic Capillary Column with an Improved “One-Pot” Approach for Hydrophilic-Interaction Liquid Chromatography (HILIC). Anal Chem 84(6):2721–2728. doi:10.1021/ac3001429

    Article  CAS  Google Scholar 

  79. Lei W, Zhang LY, Wan L, Shi BF, Wang YQ, Zhang WB (2012) Hybrid monolithic columns with nanoparticles incorporated for capillary electrochromatography. J Chromatogr A 1239:64–71. doi:10.1016/j.chroma.2012.03.065

    Article  CAS  Google Scholar 

  80. Yang Y, Geng XD (2011) Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A 1218(49):8813–8825. doi:10.1016/j.chroma.2011.10.009

    Article  CAS  Google Scholar 

  81. Wang X, Zheng YQ, Zhang CY, Yang YZ, Lin XC, Huang GH, Xie ZH (2012) Preparation and characterization of hybrid-silica monolithic column with mixed-mode of hydrophilic and strong anion-exchange interactions for pressurized capillary electrochromatography. J Chromatogr A 1239:56–63. doi:10.1016/j.chroma.2012.03.071

    Article  CAS  Google Scholar 

  82. Wang Y, Deng QL, Fang GZ, Pan MF, Yu Y, Wang S (2012) A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography. Anal Chim Acta 712:1–8. doi:10.1016/j.aca.2011.10.023

    Article  CAS  Google Scholar 

  83. Wang XC, Ding K, Yang CM, Lin XC, Lu HX, Wu XP, Xie ZH (2010) Sulfoalkylbetaine-based monolithic column with mixed-mode of hydrophilic interaction and strong anion-exchange stationary phase for capillary electrochromatography. Electrophoresis 31(17):2997–3005. doi:10.1002/elps.201000264

    Google Scholar 

  84. Cao Q, Xu Y, Liu F, Svec F, Frechet JMJ (2010) Polymer Monoliths with Exchangeable Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with Varying Surface Functionalities. Anal Chem 82(17):7416–7421. doi:10.1021/ac1015613

    Article  CAS  Google Scholar 

  85. Xu Y, Cao Q, Svec F, Frechet JMJ (2010) Porous Polymer Monolithic Column with Surface-Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides. Anal Chem 82(8):3352–3358. doi:10.1021/ac1002646

    Article  CAS  Google Scholar 

  86. Josic D, Clifton JG (2007) Use of monolithic supports in proteomics technology. J Chromatogr A 1144(1):2–13. doi:10.1016/j.chroma.2006.11.082

    Article  CAS  Google Scholar 

  87. Ma J, Zhang L, Liang Z, Zhang W, Zhang Y (2007) Monolith-based immobilized enzyme reactors: Recent developments and applications for proteome analysis. J Sep Sci 30(17):3050–3059. doi:10.1002/jssc.200700362

    Google Scholar 

  88. Ma JF, Zhang LH, Liang Z, Zhang WB, Zhang YK (2009) Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Anal Chim Acta 632(1):1–8. doi:10.1016/j.aca.2007.08.045

    Article  CAS  Google Scholar 

  89. Svec F (2006) Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis 27(5–6):947–961. doi:10.1002/elps.200500661

    Google Scholar 

  90. Krenkova J, Svec F (2009) Less common applications of monoliths: IV. Recent developments in immobilized enzyme reactors for proteomics and biotechnology. J Sep Sci 32(5–6):706–718. doi:10.1002/jssc.200800641

    Google Scholar 

  91. Kim J, Kim BC, Lopez-Ferrer D, Petritis K, Smith RD (2010) Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 10(4):687–699. doi:10.1002/pmic.200900519

    Google Scholar 

  92. Zhu GJ, Zhang LH, Yuan HM, Liang Z, Zhang WB, Zhang YK (2007) Recent development of monolithic materials as matrices in microcolumn separation systems. J Sep Sci 30(6):792–803. doi:10.1002/jssc.200600496

    Google Scholar 

  93. Spross J, Sinz A (2009) Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics. Anal Bioanal Chem 395(6):1583–1588. doi:10.1007/s00216-009-2998-z

    Article  CAS  Google Scholar 

  94. Bencina K, Podgornik A, Strancar A, Bencina M (2004) Enzyme immobilization on epoxy- and 1,1′-carbonyldiimidazole-activated methacrylate-based monoliths. J Sep Sci 27(10–11):811–818. doi:10.1002/jssc.200401800

    Google Scholar 

  95. Ma JF, Zhang LH, Liang Z, Shan YC, Zhang YK (2011) Immobilized enzyme reactors in proteomics. Trends Anal Chem 30(5):691–702. doi:10.1016/j.trac.2010.12.008

    Article  CAS  Google Scholar 

  96. Liang Y, Tao DY, Ma JF, Sun LL, Liang Z, Zhang LH, Zhang YK (2011) Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis. J Chromatogr A 1218(20):2898–2905. doi:10.1016/j.chroma.2011.02.073

    Article  CAS  Google Scholar 

  97. Calleri E, Temporini C, Gasparrini F, Simone P, Villani C, Ciogli A, Massolini G (2011) Immobilized trypsin on epoxy organic monoliths with modulated hydrophilicity: Novel bioreactors useful for protein analysis by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1218(49):8937–8945. doi:10.1016/j.chroma.2011.05.059

    Article  CAS  Google Scholar 

  98. Zhang P, Gao MX, Zhu SC, Lei J, Zhang XM (2011) Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors. J Chromatogr A 1218(47):8567–8571. doi:10.1016/j.chroma.2011.09.084

    Article  CAS  Google Scholar 

  99. Chen YZ, Wu MH, Wang KY, Chen B, Yao SZ, Zou HF, Nie LH (2011) Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene “click” strategy. J Chromatogr A 1218(44):7982–7988. doi:10.1016/j.chroma.2011.09.002

    Article  CAS  Google Scholar 

  100. Yao CH, Qi L, Hu WB, Wang FY, Yang GL (2011) Immobilization of trypsin on sub-micron skeletal polymer monolith. Anal Chim Acta 692(1–2):131–137. doi:10.1016/j.aca.2011.03.001

    Article  CAS  Google Scholar 

  101. Wu SB, Zhang L, Yang KG, Liang Z, Zhang LH, Zhang YK (2012) Preparing a metal-ion chelated immobilized enzyme reactor based on the polyacrylamide monolith grafted with polyethylenimine for a facile regeneration and high throughput tryptic digestion in proteomics. Anal Bioanal Chem 402(2):703–710. doi:10.1007/s00216-011-5501-6

    Article  CAS  Google Scholar 

  102. Ma JF, Hou CY, Liang Y, Wang TT, Liang Z, Zhang LH, Zhang YK (2011) Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic–inorganic hybrid silica monolith. Proteomics 11(5):991–995. doi:10.1002/pmic.201000550

    Google Scholar 

  103. Wang TT, Ma JF, Zhu GJ, Shan YC, Liang Z, Zhang LH, Zhang YK (2010) Integration of capillary isoelectric focusing with monolithic immobilized pH gradient, immobilized trypsin microreactor and capillary zone electrophoresis for on-line protein analysis. J Sep Sci 33(20):3194–3200. doi:10.1002/jssc.201000324

    Google Scholar 

  104. Bianco L, Mead JA, Bessant C (2009) Comparison of Novel Decoy Database Designs for Optimizing Protein Identification Searches Using ABRF sPRG2006 Standard MS/MS Data Sets. J Proteome Res 8(4):1782–1791. doi:10.1021/pr800792z

    Article  CAS  Google Scholar 

  105. Armirotti A, Benatti U, Damonte G (2009) Top-down proteomics with a quadrupole time-of-flight mass spectrometer and collision-induced dissociation. Rapid Comm Mass Spectrom 23(5):661–666. doi:10.1002/rcm.3925

    Google Scholar 

  106. Eeltink S, Dolman S, Detobel F, Swart R, Ursem M, Schoenmakers PJ (2010) High-efficiency liquid chromatography–mass spectrometry separations with 50 mm, 250 mm, and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. J Chromatogr A 1217(43):6610–6615. doi:10.1016/j.chroma.2010.03.037

    Article  CAS  Google Scholar 

  107. Detobel F, Broeckhoven K, Wellens J, Wouters B, Swarth R, Ursem M, Desmet G, Eeltink S (2010) Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns. J Chromatogr A 1217(18):3085–3090. doi:10.1016/j.chroma.2010.03.002

    Article  CAS  Google Scholar 

  108. Greiderer A, Trojer L, Huck CW, Bonn GK (2009) Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. J Chromatogr A 1216(45):7747–7754. doi:10.1016/j.chroma.2009.08.084

    Article  CAS  Google Scholar 

  109. Eeltink S, Dolman S, Detobel F, Desmet G, Swart R, Ursem M (2009) 1 mm ID poly(styrene-co-divinylbenzene) monolithic columns for high-peak capacity one- and two-dimensional liquid chromatographic separations of intact proteins. J Sep Sci 32(15–16):2504–2509. doi:10.1002/jssc.200900068

    Google Scholar 

  110. Breuker K, Jin M, Han X, Jiang H, McLafferty FW (2008) Top-down identification and characterization of biomolecules by mass spectrometry. J Am Soc Mass Spectrom 19(8):1045–1053. doi:10.1016/j.jasms.2008.05.013

    Article  CAS  Google Scholar 

  111. Eeltink S, Geiser L, Svec F, Frechet JMJ (2007) Optimization of the porous structure and polarity of polymethacrylate-based monolithic capillary columns for the LC–MS separation of enzymatic digests. J Sep Sci 30(17):2814–2820. doi:10.1002/jssc.200700185

    Google Scholar 

  112. Eschelbach JW, Jorgenson JW (2006) Improved protein recovery in reversed-phase liquid chromatography by the use of ultrahigh pressures. Anal Chem 78(5):1697–1706. doi:10.1021/ac0518304

    Article  CAS  Google Scholar 

  113. Cooper HJ, Hakansson K, Marshall AG (2005) The role of electron capture dissociation in biomolecular analysis. Mass Spectrom Rev 24(2):201–222. doi:10.1002/mas.20014

    Google Scholar 

  114. Eeltink S, Wouters B, Desmet G, Ursem M, Blinco D, Kemp GD, Treumann A (2011) High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns. J Chromatogr A 1218(32):5504–5511. doi:10.1016/j.chroma.2011.06.049

    Article  CAS  Google Scholar 

  115. Hung CW, Tholey A (2012) Tandem Mass Tag Protein Labeling for Top-Down Identification and Quantification. Anal Chem 84(1):161–170. doi:10.1021/ac202243r

    Article  CAS  Google Scholar 

  116. Wouters B, Vaast A, Treumann A, Ursem M, Ho J, Hornshaw M, Raes M, Terryn H, Eeltink S (2012) The Potential of Polymer Monolithic Capillary Columns for the LC–MS Analysis of Intact Proteins. LC–GC Eur 25(1):10

    CAS  Google Scholar 

  117. Chen YZ, Wang KY, Yang HH, Liu YX, Yao SZ, Chen B, Nie LH, Xu GM (2012) Synthesis of sulfo/vinyl biphasic silica hybrid monolithic capillary column and its application to on-column preconcentration for capillary electrochromatography. J Chromatogr A 1233:91–99. doi:10.1016/j.chroma.2012.01.024

    Article  CAS  Google Scholar 

  118. Horie K, Sato Y, Kimura T, Nakamura T, Ishihama Y, Oda Y, Ikegami T, Tanaka N (2012) Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. J Chromatogr A 1228:283–291. doi:10.1016/j.chroma.2011.12.088

    Article  CAS  Google Scholar 

  119. Iwasaki M, Sugiyama N, Tanaka N, Ishihama Y (2012) Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. J Chromatogr A 1228:292–297. doi:10.1016/j.chroma.2011.10.059

    Article  CAS  Google Scholar 

  120. Zhang ZC, Wang JH, Hui LM, Li LJ (2012) Poly(glycidyl methacrylate–divinylbenzene) based immobilized pH gradient capillary isoelectric focusing coupling with MALDI mass spectrometry for enhanced neuropeptide analysis. Electrophoresis 33(4):661–665. doi:10.1002/elps.201100447

    Google Scholar 

  121. Xin PY, Shen Y, Qi L, Yang GL, Chen Y (2011) Preparation of poly(N-isopropylacrylamide)-grafted well-controlled 3D skeletal monolith based on E-51 epoxy resin for protein separation. Talanta 85(2):1180–1186. doi:10.1016/j.talanta.2011.05.037

    Article  CAS  Google Scholar 

  122. Eghbali H, Sandra K, Detobel F, Lynen F, Nakanishi K, Sandra P, Desmet G (2011) Performance evaluation of long monolithic silica capillary columns in gradient liquid chromatography using peptide mixtures. J Chromatogr A 1218(21):3360–3366. doi:10.1016/j.chroma.2010.10.045

    Article  CAS  Google Scholar 

  123. Horie K, Ikegami T, Hosoya K, Saad N, Fiehn O, Tanaka N (2007) Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography. J Chromatogr A 1164(1–2):198–205. doi:10.1016/j.chroma.2007.07.012

    CAS  Google Scholar 

  124. Chen X, Tolley HD, Lee ML (2011) Weak cation-exchange monolithic column for capillary liquid chromatography of peptides and proteins. J Sep Sci 34(16–17):2063–2071. doi:10.1002/jssc.201100156

    Google Scholar 

  125. Chen ML, Li LM, Yuan BF, Ma Q, Feng YQ (2012) Preparation and characterization of rnethacrylate-based monolith for capillary hydrophilic interaction chromatography. J Chromatogr A 1230:54–60. doi:10.1016/j.chroma.2012.01.065

    Article  CAS  Google Scholar 

  126. Mohr JH, Swart R, Huber CG (2011) Morphology and efficiency of poly(styrene-co-divinylbenzene)-based monolithic capillary columns for the separation of small and large molecules. Anal Bioanal Chem 400(8):2391–2402. doi:10.1007/s00216-011-4777-x

    Article  CAS  Google Scholar 

  127. Chen X, Tolley HD, Lee ML (2011) Monolithic capillary columns synthesized from a single phosphate-containing dimethacrylate monomer for cation-exchange chromatography of peptides and proteins. J Chromatogr A 1218(28):4322–4331. doi:10.1016/j.chroma.2011.04.074

    Article  CAS  Google Scholar 

  128. Lerma-Garcia MJ, Simo-Alfonso EF, Ramis-Ramos G, Herrero-Martinez J (2008) Rapid determination of sterols in vegetable oils by CEC using methacrylate ester-based monolithic columns. Electrophoresis 29(22):4603–4611. doi:10.1002/elps.200800247

    Google Scholar 

  129. Ikegami T, Horie K, Saad N, Hosoya K, Fiehn O, Tanaka N (2008) Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal Bioanal Chem 391(7):2533–2542. doi:10.1007/s00216-008-2060-6

    Article  CAS  Google Scholar 

  130. Chen X, Tolley HD, Lee ML (2011) Preparation of zwitterionic polymeric monolithic columns for hydrophilic interaction capillary liquid chromatography. J Sep Sci 34(16–17):2088–2096. doi:10.1002/jssc.201100155

    Google Scholar 

  131. Bamba T, Fukusaki E, Minakuchi H, Nakazawa Y, Kobayashi A (2005) Separation of polyprenol and dolichol by monolithic silica capillary column chromatography. J Lipid Res 46(10):2295–2298. doi:10.1194/jlr.M500185-JLR200

    Article  CAS  Google Scholar 

  132. Rigobello-Masini M, Penteado JCP, Liria CW, Miranda MTM, Masini JC (2008) Implementing stepwise solvent elution in sequential injection chromatography for fluorimetric determination of intracellular free amino acids in the microalgae Tetraselmis gracilis. Anal Chim Acta 628(2):123–132. doi:10.1016/j.aca.2008.08.030

    Article  CAS  Google Scholar 

  133. Pires Penteado JC, Rigobello-Masini M, Liria CW, Machini Miranda MT, Masini JC (2009) Fluorimetric determination of intra- and extracellular free amino acids in the microalgae Tetraselmis gracilis (Prasinophyceae) using monolithic column in reversed phase mode. J Sep Sci 32(15–16):2827–2834. doi:10.1002/jssc.200800741

    Google Scholar 

  134. Zhu T, Li SN, Row KH (2011) Molecularly Imprinted Monolithic Material for the Extraction of Three Organic Acids from Salicornia herbacea L. J Appl Polym Sci 121(3):1691–1696. doi:10.1002/app.33755

  135. Bhandari P, Kumar N, Singh B, Singh V, Kaur I (2009) Silica-based monolithic column with evaporative light scattering detector for HPLC analysis of bacosides and apigenin in Bacopa monnieri. J Sep Sci 32(15–16):2812–2818. doi:10.1002/jssc.200900082

    Google Scholar 

  136. Biesaga M, Ochnik U, Pyrzynska K (2007) Analysis of phenolic acids in fruits by HPLC with monolithic columns. J Sep Sci 30(17):2929–2934. doi:10.1002/jssc.200700247

    Google Scholar 

  137. Kokotkiewicz A, Luczkiewicz M, Sowinski P, Glod D, Gorynski K, Bucinski A (2012) Isolation and structure elucidation of phenolic compounds from Cyclopia subternata Vogel (honeybush) intact plant and in vitro cultures. Food Chem 133(4):1373–1382. doi:10.1016/j.foodchem.2012.01.114

    Article  CAS  Google Scholar 

  138. McDermott GP, Conlan XA, Noonan LK, Costin JW, Mnatsakanyan M, Shalliker RA, Barnett NW, Francis PS (2011) Screening for antioxidants in complex matrices using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Anal Chim Acta 684(1–2):134–141. doi:10.1016/j.aca.2010.10.046

    Article  CAS  Google Scholar 

  139. Mehrdad M, Zebardast M, Abedi G, Koupaei MN, Rasouli H, Talebi M (2009) Validated High-Throughput HPLC Method for the Analysis of Flavonol Aglycones Myricetin, Quercetin, and Kaempferol in Rhus coriaria L. Using a Monolithic Column. J AOAC Int 92(4):1035–1043

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge FAPESP and CNPq for financial support. JCM acknowledges CNPq for a research fellowship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilda Rigobello-Masini.

Additional information

Published in the topical collection Monolithic Columns in Liquid Phase Separations with guest editor Luis A. Colon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigobello-Masini, M., Penteado, J.C.P. & Masini, J.C. Monolithic columns in plant proteomics and metabolomics. Anal Bioanal Chem 405, 2107–2122 (2013). https://doi.org/10.1007/s00216-012-6574-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6574-6

Keywords

Navigation