Skip to main content
Log in

Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of monolithic supports for a wide variety of applications has rapidly expanded during the past few years. The examples for applications of monoliths presented herein show that the chromatographic performance of bioreactors and affinity media prepared from monolithic media is superior to that of conventional particle-based systems. The ease of fabrication and modification combined with the long lifetime of the monolithic columns and their potential to be used in fully automated analytical systems make them attractive tools for an increasing number of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASP:

affinity stationary phase

CYP:

cytochrome P450

ESI-MS/MS:

electrospray ionization tandem mass spectrometry

HPLC:

high-performance liquid chromatography

IMER:

immobilized monolithic enzyme reactor

MS:

mass spectrometry

MSP:

monolithic stationary phase

PEGMA:

polyethoxylated hydroxyethyl methacrylate

RP:

reversed phase

References

  1. Nelson JM, Griffin EG (1916) J Am Chem Soc 38:1109–1115

    Article  CAS  Google Scholar 

  2. Lerman LS (1953) Proc Natl Acad Sci USA 39:232–236

    Article  CAS  Google Scholar 

  3. Mosbach K (1976) Immobilized enzymes. Academic, New York

    Google Scholar 

  4. Mosbach K (1987) Immobilized enzymes. Academic, New York

    Google Scholar 

  5. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Anal Chem 68:3498–3501

    Article  CAS  Google Scholar 

  6. Petro M, Svec F, Frechet JMJ (1996) Biotechnol Bioeng 49:355–363

    Article  CAS  Google Scholar 

  7. Grafnetter J, Coufal P, Tesarova E, Suchankova J, Bosakova Z, Sevcik J (2004) J Chromatogr A 1049(1–2):43–49

    CAS  Google Scholar 

  8. Sproß J (2007) Diploma thesis, Jena

  9. Kawakami K, Abe D, Urakawa T, Kawashima A, Oda Y, Takahashi R, Sakai S (2007) J Sep Sci 30:3077–3084

    Article  CAS  Google Scholar 

  10. Duan J, Liang Z, Yang C, Zhang J, Zhang L, Zhang W, Zhang Y (2006) Proteomics 6:412–419

    Article  CAS  Google Scholar 

  11. Krenkova J, Lacher NA, Svec F (2009) Anal. Chem 81:2004–2012

    CAS  Google Scholar 

  12. Mallik R, Hage DS (2006) J Sep Sci 29:1686–1704

    Article  CAS  Google Scholar 

  13. Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y (2008) Anal Chem 80:2949–2956

    Article  CAS  Google Scholar 

  14. Temporini C, Calleri E, Campese D, Cabrera K, Felix G, Massolini G (2007) J Sep Sci 30:3069–3076

    Article  CAS  Google Scholar 

  15. Temporini C, Perani E, Calleri E, Dolcini L, Lubda D, Caccialanza G, Massolini G (2007) Anal Chem 79:355–363

    Article  CAS  Google Scholar 

  16. Schoenherr RM, Ye M, Vannatta M, Dovichi N (2007) J Anal Chem 79:2230–2238

    Article  CAS  Google Scholar 

  17. Luo QZ, Mao XQ, Kong L, Huang XD, Zou HF (2002) J Chromatogr B 776(2):139–147

    Article  CAS  Google Scholar 

  18. Nicoli R, Bartolini M, Rudaza S, Andrisano V, Veutheya J-L (2008) J Chromatogr A 1206:2–10

    Article  CAS  Google Scholar 

  19. Bartolini M, Cavrini V, Andrisano V (2007) J Chromatogr A 1144:102–110

    Article  CAS  Google Scholar 

  20. Mancini F, Naldi M, Cavrini V, Andrisano V (2007) J Chromatogr A 1175:217–226

    Article  CAS  Google Scholar 

  21. Bartolini M, Greig NH, Yu Q-S, Andrisano V (2009) J Chromatogr A 1216:2730–2738

    Article  CAS  Google Scholar 

  22. Mallik R, Yoo MJ, Chen S, Hage DS (2008) J Chromatogr B 876:69–75

    Article  CAS  Google Scholar 

  23. Mallik R, Hage DS (2008) J Pharm Biomed Anal 46:820–830

    Article  CAS  Google Scholar 

  24. Ding YS, Zhu XF, Lin BC (1999) Electrophoresis 20:1890

    Article  CAS  Google Scholar 

  25. Jia Z, Ramstad T, Zhong M (2002) J Pharm Biomed Anal 30:405

    Article  CAS  Google Scholar 

  26. Lee K-J, Park H-J, Shin Y-H, Lee C-H (2004) Arch Pharm Res 27:978

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank A. Wolfsteller for providing scanning electron microscopy images. M. Müller is acknowledged for graphical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sinz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sproß, J., Sinz, A. Immobilized monolithic enzyme reactors for application in proteomics and pharmaceutics. Anal Bioanal Chem 395, 1583–1588 (2009). https://doi.org/10.1007/s00216-009-2998-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2998-z

Keywords

Navigation