Skip to main content
Log in

Preparing a metal-ion chelated immobilized enzyme reactor based on the polyacrylamide monolith grafted with polyethylenimine for a facile regeneration and high throughput tryptic digestion in proteomics

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Initially, a poly (glycidyl methacrylate-co-acrylamide-co-methylenebisacrylamide) monolith was prepared in the 100 μm i.d. capillary, and then was grafted with polyethylenimine (Mw, ∼25,000) for adsorbing Cu2+, followed by chelating trypsin. As a result, efficient digestion for BSA (100 ng/μL) was completed within 50 s via such immobilized enzyme reactor (IMER); yielding 47% sequence coverage by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Compared with the conventional method for preparing the metal-ion chelated IMER, the regeneration of such IMER can be achieved facilely by the respective 30 min desorption and re-adsorption of trypsin, and 51% sequence coverage was obtained for 50 s BSA digestion after regeneration. BSA down to femtomole was also efficiently digested by the prepared regenerable IMER. Meanwhile, after the consecutive digestion of myoglobin and BSA, there was not any mutual interference for both during MALDI-TOF MS identification, indicating the low nonspecific adsorption of such regenerable IMER. To test the applicability of regenerable IMER for complex sample profiling, proteins (150 ng) extracted from Escherichia coli were digested within 80 s by the regenerable IMER and further analyzed by nanoreversed phase liquid chromatography–electrospray ionization–mass spectrometry successfully, showing its practicability for the high throughput analysis of complex samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Domon B, Aebersold R (2006) Science 312:212–217

    Article  CAS  Google Scholar 

  2. Cravatt BF, Simon GM, Yates JR (2007) Nature 450:991–1000

    Article  CAS  Google Scholar 

  3. Motoyama A, Yates JR (2008) Anal Chem 80:7187–7193

    Article  CAS  Google Scholar 

  4. Lopez-Ferrer D, Cañas B, Vázquez Lodeiro JC, Rial-Otero R, Moura I, Capelo JL (2006) Trends Anal Chem 25:996–1005

    Article  CAS  Google Scholar 

  5. Monzo A, Sperling E, Guttman A (2009) Trends Anal Chem 28:854–864

    Article  CAS  Google Scholar 

  6. Sproß J, Sinz A (2010) Anal Chem 82:1434–1443

    Article  Google Scholar 

  7. Lin S, Yao GP, Qi DW, Li Y, Deng CH, Yang PY, Zhang XM (2008) Anal Chem 80:3655–3665

    Article  CAS  Google Scholar 

  8. Ma JF, Zhang LH, Liang Z, Shan YC, Zhang YK (2011) Trends Anal Chem 30:691–697

    Article  CAS  Google Scholar 

  9. Ma JF, Hou CY, Sun LL, Tao DY, Zhang YY, Shan YC, Liang Z, Zhang LH, Yang L, Zhang YK (2010) Anal Chem 82:9622–9625

    Article  CAS  Google Scholar 

  10. Ma JF, Liu JX, Sun LL, Gao L, Liang Z, Zhang LH, Zhang YK (2009) Anal Chem 81:6534–6540

    Article  CAS  Google Scholar 

  11. Krenkova J, Lacher NA, Svec F (2009) Anal Chem 81:2004–2012

    Article  CAS  Google Scholar 

  12. Kato KS, Kato M, Toyo’oka T (2002) Anal Chem 74:2943–2949

    Article  Google Scholar 

  13. Xu F, Wang WH, Tan YJ, Bruening ML (2010) Anal Chem 82:10045–10051

    Article  CAS  Google Scholar 

  14. Gao J, Xu JD, Locascio LE, Lee CS (2001) Anal Chem 73:2648–2655

    Article  CAS  Google Scholar 

  15. Li Y, Yan B, Xu XQ, Deng CH, Yang PY, Shen XZ, Zhang XM (2007) Rapid Commun Mass Spectrom 21:2263–2268

    Article  CAS  Google Scholar 

  16. Guo Z, Xu SY, Lei ZD, Zou HF, Guo BC (2003) Electrophoresis 24:3633–3639

    Article  CAS  Google Scholar 

  17. Ma JF, Hou CH, Liang Y, Wang TT, Liang Z, Zhang LH, Zhang YK (2011) Proteomics 11:991–995

    Article  CAS  Google Scholar 

  18. Li Y, Xu XQ, Deng CH, Yang PY, Zhang XM (2007) J Proteome Res 6:3849–3855

    Article  CAS  Google Scholar 

  19. Wei LM, Zhang W, Lu HJ, Yang PY (2010) Talanta 80:1298–1304

    Article  CAS  Google Scholar 

  20. López-Ferrer D, Hixson KK, Smallwood H, Squier TC, Petritis K, Smith RD (2009) Anal Chem 81:6272–6277

    Article  Google Scholar 

  21. Brady D, Jordaan J (2009) J Biotechnol Lett 31:1639–1650

    Article  CAS  Google Scholar 

  22. Wu JM, Luan MM, Zhao JY (2006) Int J Biol Macromol 39:185–191

    Article  CAS  Google Scholar 

  23. Arıca MY, Bayramǒglu G (2004) J Mol Catal B: Enzym 27:255–265

    Article  Google Scholar 

  24. Bayramoğlu G, Yalcin E, Arıca MY (2005) Process Biochem 40:3505–3513

    Article  Google Scholar 

  25. Shi QH, Tian Y, Dong XY, Bai S, Sun Y (2003) Eng J 16:317–322

    CAS  Google Scholar 

  26. Duan JC, Sun LL, Liang Z, Zhang J, Wang H, Zhang LH, Zhang WB, Zhang YK (2006) J Chromatogr A 1106:165–174

    Article  CAS  Google Scholar 

  27. Duan JC, Liang Z, Yang C, Zhang J, Zhang LH, Zhang WB, Zhang YK (2006) Proteomics 6:412–419

    Article  CAS  Google Scholar 

  28. Ma JF, Liang Z, Qiao XQ, Deng QL, Tao DY, Zhang LH, Zhang YK (2008) Anal Chem 80:2949–2956

    Article  CAS  Google Scholar 

  29. Wu SB, Sun LL, Ma JF, Yang KG, Liang Z, Zhang LH, Zhang YK (2011) Talanta 83:1748–1753

    Article  CAS  Google Scholar 

  30. Zhu GJ, Yang C, Zhang LH, Liang Z, Zhang WB, Zhang YK (2006) Talanta 70:2–6

    Article  CAS  Google Scholar 

  31. Kruger NJ (2002) The protein protocols handbook part I. Humana, New Jersey, pp 15–21

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Nature Science Foundation (Grants 20935004 and 20775080), National Basic Research Program of China (Grant 2007CB914100) and the Analytical Method Innovation Program of MOST (2010IM030500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiguang Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Zhang, L., Yang, K. et al. Preparing a metal-ion chelated immobilized enzyme reactor based on the polyacrylamide monolith grafted with polyethylenimine for a facile regeneration and high throughput tryptic digestion in proteomics. Anal Bioanal Chem 402, 703–710 (2012). https://doi.org/10.1007/s00216-011-5501-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5501-6

Keyword

Navigation