Skip to main content
Log in

Porous polymer monoliths for small molecule separations: advancements and limitations

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Porous polymer monoliths are considered to be one of the major breakthroughs in separation science. These materials are well known to be best suited for the separation of large molecules, specifically proteins, an observation most often explained by convective mass transfer and the absence of small pores in the polymer scaffold. However, this conception is not sufficient to explain the performance of small molecules. This review focuses in particular on the preparation of (macro)porous polymer monoliths by simple free-radical processes and the key events in their formation. There is special focus on the fluid transport properties in the heterogeneous macropore space (flow dispersion) and on the transport of small molecules in the swollen, and sometimes permanently porous, globule-scale polymer matrix. For small molecule applications in liquid chromatography, it is consistently found in the literature that the major limit for the application of macroporous polymer monoliths lies not in the optimization of surface area and/or modification of the material and microscopic morphological properties only, but in the improvement of mass transfer properties. In this review we discuss the effect of resistance to mass transfer arising from the nanoscale gel porosity. Gel porosity induces stagnant mass transfer zones in chromatographic processes, which hamper mass transfer efficiency and have a detrimental effect on macroscopic chromatographic dispersion under equilibrium (isocratic) elution conditions. The inherent inhomogeneity of polymer networks derived from free-radical cross-linking polymerization, and hence the absence of a rigid (meso)porous pore space, represents a major challenge for the preparation of efficient polymeric materials for the separation of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hjertén S, Liao JL, Zhang R (1989) J Chromatogr 473:273–275

    Article  Google Scholar 

  2. Svec F, Fréchet JMJ (1992) Anal Chem 64:820–822

    Article  CAS  Google Scholar 

  3. Tennikova TB, Bleha M, Svec F, Almazova TV, Belenkii BG (1991) J Chromatogr 555:97–107

    Article  CAS  Google Scholar 

  4. Wang QC, Svec F, Fréchet JMJ (1993) Anal Chem 65:2243–2248

    Article  CAS  Google Scholar 

  5. Wang QC, Svec F, Fréchet JMJ (1994) J Chromatogr A 669:230–235

    Article  CAS  Google Scholar 

  6. Nischang I, Svec F, Fréchet JMJ (2009) J Chromatogr A 1216:2355–2361

    Article  CAS  Google Scholar 

  7. Nischang I, Brueggemann O, Svec F (2010) Anal Bioanal Chem 397:953–960

    Article  CAS  Google Scholar 

  8. Nischang I, Svec F, Fréchet JMJ (2009) Anal Chem 81:7390–7396

    Article  CAS  Google Scholar 

  9. Svec F (2010) J Chromatogr A 1217:902–924

    Article  CAS  Google Scholar 

  10. Yu C, Davey MH, Svec F, Fréchet JMJ (2001) Anal Chem 73:5088–5096

    Article  CAS  Google Scholar 

  11. Svec F, Fréchet JMJ (1996) Science 273:205–211

    Article  CAS  Google Scholar 

  12. Svec F (2006) Electrophoresis 27:947–961

    Article  CAS  Google Scholar 

  13. Xie SF, Svec F, Fréchet JMJ (1998) Chem Mater 10:4072–4078

    Article  CAS  Google Scholar 

  14. Mair DA, Schwei TR, Dinio TS, Svec F, Fréchet JMJ (2009) Lab Chip 9:877–883

    Article  CAS  Google Scholar 

  15. Vazquez M, Paull B (2010) Anal Chim Acta 668:100–113

    Article  CAS  Google Scholar 

  16. He M, Bao JB, Zeng Y, Harrison DJ (2010) Electrophoresis 31:2422–2428

    Article  CAS  Google Scholar 

  17. Buchmeiser MR (2007) Polymer 48:2187–2198

    Article  CAS  Google Scholar 

  18. Gömann A, Deverell JA, Munting KF, Jones RC, Rodemann T, Canty AJ, Smith JA, Guijt RM (2009) Tetrahedron 65:1450–1454

    Article  CAS  Google Scholar 

  19. Svec F (2006) J Chromatogr B 841:52–64

    Article  CAS  Google Scholar 

  20. Yang GL, Liu HY (2010) Curr Pharm Anal 6:213–224

    Article  CAS  Google Scholar 

  21. Jungbauer A, Hahn R (2008) J Chromatogr A 1184:62–79

    Article  CAS  Google Scholar 

  22. Xie S, Allington RW, Svec F, Fréchet JMJ (1999) J Chromatogr A 865:169–174

    Article  CAS  Google Scholar 

  23. Hilder EF, Svec F, Fréchet JMJ (2004) J Chromatogr A 1044:3–22

    Article  CAS  Google Scholar 

  24. Peters EC, Petro M, Svec F, Fréchet JMJ (1998) Anal Chem 70:2288–2295

    Article  CAS  Google Scholar 

  25. Peters EC, Petro M, Svec F, Fréchet JMJ (1998) Anal Chem 70:2296–2302

    Article  CAS  Google Scholar 

  26. Gusev I, Huang X, Horvath C (1999) J Chromatogr A 855:273–290

    Article  CAS  Google Scholar 

  27. Premstaller A, Oberacher H, Huber CG (2002) Anal Chem 72:4386–4393

    Article  CAS  Google Scholar 

  28. Ivanov AR, Zang L, Karger BL (2003) Anal Chem 75:5306–5316

    Article  CAS  Google Scholar 

  29. Nischang I, Chen GF, Tallarek U (2006) J Chromatogr A 1109:32–50

    Article  CAS  Google Scholar 

  30. Nischang I, Tallarek U (2007) Electrophoresis 28:611–626

    Article  CAS  Google Scholar 

  31. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Anal Chem 68:3498–3501

    Article  CAS  Google Scholar 

  32. Nakanishi K, Minakuchi H, Soga N, Tanaka N (1997) J Sol-Gel Sci Technol 8:547–552

    CAS  Google Scholar 

  33. Unger KK, Skudas R, Schulte MM (2008) J Chromatogr A 1184:393–415

    Article  CAS  Google Scholar 

  34. Siouffi AM (2003) J Chromatogr A 1000:801–818

    Article  CAS  Google Scholar 

  35. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Anal Chem 73:420A–429A

    Article  CAS  Google Scholar 

  36. Leinweber FC, Tallarek U (2003) J Chromatogr A 1006:207–228

    Article  CAS  Google Scholar 

  37. Guiochon G (2007) J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  38. Ishizuka N, Minakuchi H, Nakanishi K, Soga N, Nagayama H, Hosoya K, Tanaka N (2000) Anal Chem 72:1275–1280

    Article  CAS  Google Scholar 

  39. Tanaka N, Nagayama H, Kobayashi H, Ikegami T, Hosoya K, Ishizuka N, Minakuchi H, Nakanishi K, Cabrera K, Lubda D (2000) J High Resolut Chromatogr 23:111–116

    Article  CAS  Google Scholar 

  40. Bruns S, Mullner T, Kollmann M, Schachtner J, Holtzel A, Tallarek U (2010) Anal Chem 82:6569–6575

    Article  CAS  Google Scholar 

  41. Hlushkou D, Bruns S, Holtzel A, Tallarek U (2010) Anal Chem 82:7150–7159

    Article  CAS  Google Scholar 

  42. Hlushkou D, Bruns S, Tallarek U (2010) J Chromatogr A 1217:3674–3682

    Article  CAS  Google Scholar 

  43. Gritti F, Guiochon G (2009) J Chromatogr A 1216:4752–4767

    Article  CAS  Google Scholar 

  44. Nordborg A, Hilder EF (2009) Anal Bioanal Chem 394:71–84

    Article  CAS  Google Scholar 

  45. Nevejans F, Verzele M (1987) J Chromatogr 406:325–342

    Article  CAS  Google Scholar 

  46. Jerabek K (1985) Anal Chem 57:1598–1602

    Article  CAS  Google Scholar 

  47. Potter OG, Hilder EF (2008) J Sep Sci 31:1881–1906

    Article  CAS  Google Scholar 

  48. Vlakh EG, Tennikova TB (2007) J Sep Sci 30:2801–2813

    Article  CAS  Google Scholar 

  49. Li Y, Lee ML (2009) J Sep Sci 32:3369–3378

    Article  CAS  Google Scholar 

  50. Okay O (2000) Prog Pol Sci 25:711–779

    Article  CAS  Google Scholar 

  51. Svec F, Fréchet JMJ (1995) Chem Mater 7:707–715

    Article  CAS  Google Scholar 

  52. Nischang I, Brüggemann O (2010) J Chromatogr A 1217:5389–5397

    Article  CAS  Google Scholar 

  53. Erbay E, Okay O (1998) Pol Bull 41:379–385

    Article  CAS  Google Scholar 

  54. Okay O, Gurun C (1992) J Appl Polym Sci 46:421–434

    Article  CAS  Google Scholar 

  55. Svec F, Tennikova TB, Deyl Z (2003) Monolithic materials: preparation, properties, and applications. Elsevier, Amsterdam

    Google Scholar 

  56. Svec F, Fréchet JMJ (1995) Macromolecules 28:7580–7582

    Article  CAS  Google Scholar 

  57. Gao H, Min K, Matyjaszewski K (2007) Macromolecules 40:7763–7770

    Article  CAS  Google Scholar 

  58. Van Camp W, Gao HF, Du Prez FE, Matyjaszewski K (2010) J Polym Sci A Polym Chem 48:2016–2023

    Article  CAS  Google Scholar 

  59. Bastide J, Leibler L (1988) Macromolecules 21:2647–2649

    Article  CAS  Google Scholar 

  60. Kannurpatti AR, Anseth JW, Bowman CN (1998) Polymer 39:2507–2513

    Article  CAS  Google Scholar 

  61. Wang AR, Zhu S (2005) J Polym Sci A Polym Chem 43:5710–5714

    Article  CAS  Google Scholar 

  62. Walling C (1945) J Am Chem Soc 67:441–447

    Article  Google Scholar 

  63. Andrzejewska E (2001) Prog Polym Sci 26:605–665

    Article  CAS  Google Scholar 

  64. Wiley RH (1975) Pure Appl Chem 43:57–75

    Article  CAS  Google Scholar 

  65. Nevejans F, Verzele M (1985) J Chromatogr 350:145–150

    Article  CAS  Google Scholar 

  66. Urban J, Eeltink S, Jandera P, Schoenmakers PJ (2008) J Chromatogr A 1182:161–168

    Article  CAS  Google Scholar 

  67. Bystrom E, Viklund C, Irgum K (2010) J Sep Sci 33:191–199

    Article  CAS  Google Scholar 

  68. Urban J, Jandera P, Schoenmakers P (2007) J Chromatogr A 1150:279–289

    Article  CAS  Google Scholar 

  69. Wilkins DK, Grimshaw SB, Receveur V, Dobson CM, Jones JA, Smith LJ (1999) Biochemistry 38:16424–16431

    Article  CAS  Google Scholar 

  70. Li JY, Litwinson LM, Cantwell FF (1996) J Chromatogr A 726:25–36

    Article  CAS  Google Scholar 

  71. Li JY, Cantwell F (1996) J Chromatogr A 726:37–44

    Article  CAS  Google Scholar 

  72. Coufal P, Cihak M, Suchankova J, Tesarova E, Bosakova Z, Stulik K (2002) J Chromatogr A 946:99–106

    Article  CAS  Google Scholar 

  73. Moravcova D, Jandera P, Urban J, Planeta J (2003) J Sep Sci 26:1005–1016

    Article  CAS  Google Scholar 

  74. Ehlert S, Trojer L, Vollmer M, van de Goor T, Tallarek U (2010) J Mass Spectrom 45:313–320

    Article  CAS  Google Scholar 

  75. Huo Y, Schoenmakers PJ, Kok WT (2007) J Chromatogr A 1175:81–88

    Article  CAS  Google Scholar 

  76. Siouffi AM (2006) J Chromatogr A 1126:86–94

    Article  CAS  Google Scholar 

  77. Gritti F, Felinger A, Guiochon G (2006) J Chromatogr A 1136:57–72

    Article  CAS  Google Scholar 

  78. Moravcova D, Jandera P, Urban J, Planeta J (2004) J Sep Sci 27:789–800

    Article  CAS  Google Scholar 

  79. Eeltink S, Herrero-Martinez JM, Rozing GP, Schoenmakers PJ, Kok WT (2005) Anal Chem 77:7342–7347

    Article  CAS  Google Scholar 

  80. Huang YP, Zhang SJ, Wu X, Zhang QW, Liu ZS (2009) Chromatographia 70:691–698

    Article  CAS  Google Scholar 

  81. Bidlingmaier B, Unger KK, von Doehren N (1999) J Chromatogr A 832:11–16

    Article  CAS  Google Scholar 

  82. Nunez O, Nakanishi K, Tanaka N (2008) J Chromatogr A 1191:231–252

    Article  CAS  Google Scholar 

  83. Greiderer A, Trojer L, Huck CW, Bonn GK (2009) J Chromatogr A 1216:7747–7754

    Article  CAS  Google Scholar 

  84. Greiderer A, Ligon SC, Huck CW, Bonn GK (2009) J Sep Sci 32:2510–2520

    Article  CAS  Google Scholar 

  85. Trojer L, Bisjak CP, Wieder W, Bonn GK (2009) J Chromatogr A 1216:6303–6309

    Article  CAS  Google Scholar 

  86. Nischang I, Teasdale I, Brüggemann O (2010) J Chromatogr A 1217:7514–7522

    Google Scholar 

  87. Davankov VA, Rogozhin SV, Tsyurupa MP (1973) Macrocross-linked polystyrenes. U.S. Patent Appl. 3,729,457

  88. Davankov VA, Tsyurupa MP (1990) React Polym 13:27–42

    Article  CAS  Google Scholar 

  89. Tsyurupa MP, Davankov VA (2002) React Funct Polym 53:193–203

    Article  CAS  Google Scholar 

  90. Ahn JH, Jang JE, Oh CG, Ihm SK, Cortez J, Sherrington DC (2006) Macromolecules 39:627–632

    Article  CAS  Google Scholar 

  91. Davankov VA, Tsyurupa M (2010) Hypercrosslinked polymeric networks and adsorbing materials: synthesis, properties, structure, and applications. Elsevier, Amsterdam

    Google Scholar 

  92. Aleksieva K, Xu J, Wang LM, Sassi A, Pientka Z, Zhang ZP, Jerabek K (2006) Polymer 47:6544–6550

    Article  CAS  Google Scholar 

  93. Penner NA, Nesterenko PN, Ilyin MM, Tsyurupa MP, Davankov VA (1999) Chromatographia 50:611–620

    Article  CAS  Google Scholar 

  94. Urban J, Svec F, Fréchet JMJ (2010) Anal Chem 82:1621–1623

    Article  CAS  Google Scholar 

  95. Aoki H, Tanaka N, Kubo T, Hosoya K (2008) J Polym Sci Polym Chem 46:4651–4673

    Article  CAS  Google Scholar 

  96. Aoki H, Kubo T, Ikegami T, Tanaka N, Hosoya K, Tokuda D, Ishizuka N (2006) J Chromatogr A 1119:66–79

    Article  CAS  Google Scholar 

  97. Lubbad SH, Buchmeiser MR (2009) J Sep Sci 32:2521–2529

    Article  CAS  Google Scholar 

  98. Lubbad SH, Buchmeiser MR (2010) J Chromatogr A 1217:3223–3230

    Article  CAS  Google Scholar 

  99. Li YY, Tolley HD, Lee ML (2010) J Chromatogr A 1217:4934–4945

    Article  CAS  Google Scholar 

  100. Xu ZD, Yang LM, Wang QQ (2009) J Chromatogr A 1216:3098–3106

    Article  CAS  Google Scholar 

  101. Nesterenko EP, Nesterenko PN, Connolly D, Lacroix F, Paull B (2010) J Chromatogr A 1217:2138–2146

    Article  CAS  Google Scholar 

  102. Causon TJ, Shellie RA, Hilder EF (2009) Analyst 134:440–442

    Article  CAS  Google Scholar 

  103. Aoki H, Tanaka N, Kubo T, Hosoya K (2009) J Sep Sci 32:341–358

    Article  CAS  Google Scholar 

  104. Urban J, Skerikova V, Jandera P, Kubickova R, Pospisilova M (2009) J Sep Sci 32:2530–2543

    Article  CAS  Google Scholar 

  105. Jandera P, Urban J, Skerikova V, Langmaier P, Kubickova R, Planeta J (2010) J Chromatogr A 1217:22–33

    Article  CAS  Google Scholar 

  106. Jiang ZJ, Smith NW, Ferguson PD, Taylor MR (2007) Anal Chem 79:1243–1250

    Article  CAS  Google Scholar 

  107. Jiang ZJ, Smith NW, Ferguson PD, Taylor MR (2007) J Chromatogr A 1216:2439–2448

    Article  CAS  Google Scholar 

  108. Jiang ZJ, Smith NW, Ferguson PD, Taylor MR (2009) J Sep Sci 32:2544–2555

    Article  CAS  Google Scholar 

  109. Skerikova V, Jandera P (2010) J Chromatogr A 1217:7981–7989

    Google Scholar 

  110. Karenga S, El Rassi Z (2008) J Sep Sci 31:2677–2685

    Article  CAS  Google Scholar 

  111. Karenga S, El Rassi Z (2010) Electrophoresis 31:991–1002

    CAS  Google Scholar 

  112. Svec F, Kurganov AA (2008) J Chromatogr A 1184:281–295

    Article  CAS  Google Scholar 

  113. Kanatyeva A, Korolev A, Shiryaeva V, Popova T, Kurganov A (2009) J Sep Sci 32:2635–2641

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I.N. acknowledges financial support from Theodor Körner Fonds for support of arts and sciences in Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Nischang.

Additional information

Published in the special issue Analytical Sciences in Austria with guest editors G. Allmaier, W. Buchberger and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nischang, I., Teasdale, I. & Brüggemann, O. Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 400, 2289–2304 (2011). https://doi.org/10.1007/s00216-010-4579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4579-6

Keywords

Navigation