Skip to main content
Log in

Rank defect analysis and the realization of proper singularity in normal equations of geodetic networks

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The singularity of input normal equations (NEQ) is a crucial element for their optimal handling in the context of terrestrial reference frame (TRF) estimation under the minimal-constraint framework. However, this element is often missing in the recovered NEQ from SINEX files after the usual deconstraining based on the stated information for the stored solutions. The same setback also occurs with the original NEQ that are formed by the least-squares processing of space geodetic data due to the datum information which is carried by various modeling choices and/or software-dependent procedures. In the absence of this datum-related singularity, it is not possible to obtain genuine minimally constrained solutions because of the interference between the input NEQ’s content and the external datum conditions, a fact that may alter the geometrical information of the original measurements and can cause unwanted distortions in the estimated solution. The main goal of this paper is the formulation of a filtering scheme to enforce the proper (or desired) singularity in the input NEQ with regard to datum parameters that will be handled by the minimal-constraint setting in TRF estimation problems. The importance of this task is extensively discussed and justified with the help of several numerical examples in different GNSS networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Altamimi Z (2003) Discussion on how to express a regional GPS solution in the ITRF. EUREF Publication No. 12, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 162–167

  • Altamimi Z, Dermanis A (2009) The choice of reference system in ITRF formulation. IAG Symposia Series, vol 137. Springer, Berlin, pp 329–334

  • Altamimi Z, Boucher C, Sillard P (2002) New trends for the realization of the international terrestrial reference system. Adv Space Res 30(2):175–184

    Article  Google Scholar 

  • Angermann D, Drewes H, Krugel M, Meisel B, Gerstl M, Kelm R, Muller H, Seemuller W, Tesmer V (2004) ITRS Combination Center at DGFI: A Terrestrial Reference Frame Realization 2003. Deutsche Geodätische Kommission, Reihe B, Heft Nr. 313

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131

    Article  Google Scholar 

  • Blaha G (1971) Inner adjustment constraints with emphasis on range observations. Department of Geodetic Science, The Ohio State University, OSU Report No. 148, Columbus, Ohio

  • Blewitt G (1998) GPS data processing methodology. In: Teunissen PJG, Kleusberg A (eds) GPS for Geodesy, 2nd edn. Springer, Berlin, pp 231–270

    Chapter  Google Scholar 

  • Bloßfeld M (2015) The key role of satellite laser ranging towards the integrated estimation of geometry, rotation and gravitational field of the Earth. PhD thesis, Technische Universität München. DGK, Reihe C, Heft Nr. 745

  • Bloßfeld M, Seitz M, Angermann D, Moreaux G (2016) Quality assessment of IDS contribution to ITRF2014 performed by DGFI-TUM. Adv Space Res. doi:10.1016/j.asr.2015.12.016

    Google Scholar 

  • Dach R, Lutz S, Walser P, Fridez P (2015) User manual of the Bernese GNSS Software, Version 5.2, Astronomical Institute, University of Bern, Bern Switzerland. http://www.bernese.unibe.ch

  • Davies P, Blewitt G (2000) Methodology for global geodetic time series estimation: a new tool for geodynamics. J Geophys Res 105(B5):11083–11100

    Article  Google Scholar 

  • Dermanis A (2003) The rank deficiency in estimation theory and the definition of reference frames. IAG Symposia Series, vol 127. Springer, Berlin, pp 145–156

  • Ebner H (1975) Analysis of covariance matrices. In: Proceedings of the ISPRS commission III symposium, Stuttgart, 2–6 Sept 1974, pp 111–121, Deutsche Geodätische Kommission, Reihe B, Heft Nr. 214

  • Glaser S, Fritsche M, Sosnica K, Rodriguez-Solano CJ, Wang K, Dach R, Hugentobler U, Rothacher M, Dietrich R (2015) A consistent combination of GNSS and SLR with minimum constraints. J Geod 89(12):1165–1180

    Article  Google Scholar 

  • Hansen PC (1998) Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia

    Book  Google Scholar 

  • IERS (2006) SINEX—Solution (Software/technique) Independent exchange format. Technical document version 2.02, International Earth Rotation and Reference Systems Service. http://www.iers.org/documents/ac/sinex/sinex_v202.pdf

  • Jiang W, Li Z, van Dam T, Ding W (2013) Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. J Geod 87(7):687–703

    Article  Google Scholar 

  • Kaniuth K, Vetter S (2005) Vertical velocities of European coastal sites derived from continuous GPS observations. GPS Solut 9:32–40

    Article  Google Scholar 

  • Kelm R (2003) Rank defect analysis and variance component estimation for inter-technique combination. In: Proceedings of the IERS Workshop on Combination Research and Global Geophysical Fluids. Richter B, Schwegmann W, Dick WR (eds) IERS Technical Note No. 30, pp 112–114, Verlag des Bundesamts fur Kartographie und Geodäsie, Frankfurt am Main

  • Koch K-R (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Kotsakis C (2012) Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J Geod 86(9):755–774

    Article  Google Scholar 

  • Kotsakis C (2013) Generalized inner constraints for geodetic network densification problems. J Geod 87(7):661–673

    Article  Google Scholar 

  • Legrand J, Bergeot N, Bruyninx C, Woppelmann G, Bouin M-N, Altamimi Z (2010) Impact of regional reference frame definition on geodynamic interpretations. J Geodyn 49(3–4):116–122

    Article  Google Scholar 

  • Makinen J, Koivula H, Poutanen M, Saaranen V (2003) Vertical velocities from permanent GPS networks and from repeated precise levelling. J Geodyn 35(4–5):443–456

    Article  Google Scholar 

  • Meissl P (1965) Uber die innere Genauigheit dreidimensionaler Punkthaufens. Vermessungswesen 90:109–118

    Google Scholar 

  • Meissl P (1969) Zusammengfassung und Ausbau der inneren Fehlertheoric eines Punkthaufens. Deutsche Geodätische Kommission, Reihe A 61:8–21

    Google Scholar 

  • Rebischung P (2014) Can GNSS contribute to improving the ITRF definition? PhD thesis, Observatoire de Paris, Ecole Doctorale Astronomie et Astrophysique d’Ile-de-France

  • Rebischung P, Altamimi Z, Ray J, Garayt B (2016) The IGS contribution to ITRF2014. J Geod. doi:10.1007/s00190-016-0897-6

    Google Scholar 

  • Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123

    Article  Google Scholar 

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75(2):63–73

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114:B09403. doi:10.1029/2009JB006344

  • van Dam T, Collilieux X, Wuite J, Altamimi Z, Ray J (2012) Nontidal ocean loading: amplitudes and potential effects in GPS height time series. J Geod 86(1):1043–1057

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kotsakis.

Appendix

Appendix

The equivalency between the CDR filtering that was presented in Sect. 4.1 and the related methodology for deriving datum-free NEQ according to Bloßfeld (2015, p. 31) will be demonstrated here.

Let us consider a normal system \({\varvec{N}}\left( {{\varvec{X}}-{\varvec{X}}_o } \right) ={\varvec{u}}\) that is obtained from the analysis of space geodetic observations for estimating the station positions \({\varvec{X}}\) in a geodetic network with respect to a target frame. It is assumed that this system has full rank due to datum information which is present in the form of (unknown) minimal constraints. This setting can cover two different cases of “input NEQ” with practical relevance for TRF estimation problems, namely:

  1. 1.

    minimally constrained NEQ recovered from SINEX files which do not report the information for the applied constraints in the stored solutions; or

  2. 2.

    deconstrained NEQ recovered from SINEX files which report the information for the applied constraints in the stored solutions.

The former case is considered in Bloßfeld (2015) and Rebischung (2014), yet the latter is also of interest as it could require the implementation of an additional datum removal scheme (see the discussion and examples in Sect. 2).

The normal system \({\varvec{N}}\left( {{\varvec{X}}-{\varvec{X}}_o } \right) ={\varvec{u}}\) can be algebraically associated with a “fictitious” system of observation equations, in the sense that

$$\begin{aligned} {\varvec{N}}={\varvec{A}}^{T}{\varvec{PA}}, \quad {\varvec{u}}={\varvec{A}}^{T}{\varvec{Pb}} \end{aligned}$$
(19)

where \({\varvec{A}}\), \({\varvec{P}}\) and \({\varvec{b}}\) stem from a full-rank linear Gauss–Markov model

$$\begin{aligned} {\varvec{b}}={\varvec{A}}\left( {{\varvec{X}}-{\varvec{X}}_o } \right) +{\varvec{v}}, \quad {\varvec{v}}{ \sim }(\mathbf{0},\sigma ^{2}{\varvec{P}}^{-1}) \end{aligned}$$
(20)

The selective removal of datum information from the normal system can be implemented by introducing an artificial frame-related rank defect in the above system of observation equations. This is achieved via a simple re-parameterization using the Helmert transformation model

$$\begin{aligned} {\varvec{X}}={{\varvec{X}}}'+{\varvec{E}}^{T}{\varvec{\theta }} \end{aligned}$$
(21)

where the elements of \({\varvec{\theta }} \) (and the rows of the transformation matrix \({\varvec{E}})\) correspond to the datum parameters that we wish to filter out. By substituting Eq. (21) into Eq. (20), we obtain the extended system of observation equations

$$\begin{aligned} {\varvec{b}}={\varvec{A}}\left( {{{\varvec{X}}}'-{\varvec{X}}_o } \right) +{\varvec{AE}}^{T}{\varvec{\theta }} +{\varvec{v}}, \quad {\varvec{v}}{ \sim }(\mathbf{0},\sigma ^{2}{\varvec{P}}^{-1}) \end{aligned}$$
(22)

which, in turn, is linked with the augmented normal system

$$\begin{aligned} \left[ {{\begin{array}{cc} {\varvec{N}}&{} {{\varvec{NE}}^{T}} \\ {{\varvec{EN}}}&{} {{\varvec{ENE}}^{T}} \\ \end{array} }} \right] \left[ {{\begin{array}{c} {{{\varvec{X}}}'-{\varvec{X}}_o } \\ {\varvec{\theta }} \\ \end{array} }} \right] =\left[ {{\begin{array}{c} {\varvec{u}} \\ {{\varvec{Eu}}} \\ \end{array} }} \right] \end{aligned}$$
(23)

Obviously the above system retains the same information about the network’s geometrical characteristics as the original system \({\varvec{N}}\left( {{\varvec{X}}-{\varvec{X}}_o } \right) ={\varvec{u}}\), yet it is singular since the parameter vectors \({{\varvec{X}}}'\) and \({\varvec{\theta }}\) cannot be separately estimated from the same observations.

If we reduce the (unknown) datum parameters from Eq. (23), then the following “filtered” normal system is derived

$$\begin{aligned}&\left( {{\varvec{N}}-{\varvec{NE}}^{T}({\varvec{ENE}}^{T})^{-1}{\varvec{EN}}} \right) \left( {{{\varvec{X}}}'-{\varvec{X}}_o } \right) \nonumber \\&\quad ={\varvec{u}}-{\varvec{NE}}^{T}({\varvec{ENE}}^{T})^{-1}{\varvec{Eu}} \end{aligned}$$
(24)

or, equivalently

$$\begin{aligned}&\left( {{\varvec{I}}-{\varvec{NE}}^{T}({\varvec{ENE}}^{T})^{-1}{\varvec{E}}} \right) {\varvec{N}}\left( {{{\varvec{X}}}'-{\varvec{X}}_o } \right) \nonumber \\&\quad =\left( {{\varvec{I}}-{\varvec{NE}}^{T}({\varvec{ENE}}^{T})^{-1}{\varvec{E}}} \right) {\varvec{u}} \end{aligned}$$
(25)

The last equation is identical to the reconstructed singular NEQ according to Eqs. (9) and (12) of the present paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsakis, C., Chatzinikos, M. Rank defect analysis and the realization of proper singularity in normal equations of geodetic networks. J Geod 91, 627–652 (2017). https://doi.org/10.1007/s00190-016-0989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0989-3

Keywords

Navigation