Skip to main content
Log in

Different equivalent approaches to the geodetic reference system

  • Satellite Positioning for Geosciences
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

A new approach to the determination of least-squares solutions for the rank deficient model is presented, which, in place of the classical minimal constraints, utilizes the expression of the excess parameters as a function of a subset of unknown parameters describing the model without ambiguities. The role of the lack of reference system definition in the resulting rank deficiency is explained, first for the original non-linear model case, and is specialized next to the linearized model. The whole set of solutions is parameterized in terms of two matrices defining the linearized relation from the model describing parameters to the remaining ones. Particular values are obtained for the case of solution with minimal trace of its covariance matrix, as well for the solution for minimum norm. Finally, the connection with the existing classical approach is established, while the approach is further elaborated in terms of the full-rank decompositions of the model design matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baarda W (1995) Linking up spatial models in geodesy. Extended S-Transformations. Netherlands Geodetic Com-mission, Publ. in Geodesy, New Series, no. 41, Delft

  • Biagi L, Sanso F (2003) Sistemi di riferimento in geodesia: algebra e geometria dei minimi quadrati per un modello con deficienza di rango. Bollettino di Geodesia e Scienze Affini. Parte prima: Anno LXII, N. 4, 261-284. Parte seconda: Anno LXIII, N. 1, 29–52. Parte terza: Anno LXIII, N. 2:129–149

    Google Scholar 

  • Bjerhammar A (1951) Rectangular reciprocal matrices with special emphasis to geodetic calculations. Bull Géodésique 52:188–220

    Article  Google Scholar 

  • Blaha G (1971) Inner adjustment constraints with emphasis on range observations. Department of Geodetic Science, Report 148, The Ohio State University, Columbus

  • Blaha G (1982) Free networks: minimum norm solution as obtained by the inner adjustment constraint method. Bull Géodésique 56:209–219

    Article  Google Scholar 

  • Dermanis A (1995) The nonlinear and space-time geodetic datum problem. In: Intern. Meeting “Mathematische Methoden der Geodäsie”, Oberwolfach, 1–7 Oct. 1995. http://der.topo.auth.gr/

  • Dermanis A (1998) Generalized inverses of nonlinear mappings and the nonlinear geodetic datum problem. J Geodesy 72:71–100

    Article  Google Scholar 

  • Dermanis A (2000) Establishing global reference frames. Nonlinear, temporal, geophysical and stochastic aspects. In: Sideris M (ed) Gravity, geoid and geodynamics 2000, p. 35–42, IAG Symposia, vol. 123, Springer, Heidelberg 2001

  • Dermanis A, 2003. The rank deficiency in estimation theory and the definition of reference frames. In: Sansò F (ed) V Hotine-Marussi Symposium on Mathematical Geodesy. IAG Symposia 127, pp 145–156. Springer, Berlin

  • Dermanis A (2016) Global reference systems: theory and open questions. invited paper at the academia dei lincei session, In: VIII Hotine-Marussi symposium on mathematical geodesy, Rome, 17–21 June, 2013. Sneeuw N, Novák P, Crespi M, Sansò F (eds): VIII Hotine-Marussi Symposium on Mathematical Geodesy, IAG Symposia, vol 142, pp 9–16. Springer International Publishing, Switzerland

  • Grafarend E, Schaffrin B (1974) Unbiased free net adjustment. Surv Rev 22(171):200–218

    Article  Google Scholar 

  • Grafarend E, Schaffrin B (1976) Equivalence of estimable quantities and invariants in geodetic networks. Zeit-schrift für Vemessungswesen 101(11):485–491

    Google Scholar 

  • Koch K-R (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Meissl P (1962) Die innere Genauigkeit eines Punkthaufens. Österreichers Zeitschrift für Vermessungswesen, 50, 159–165 and 186–194

  • Meissl P (1965) Uber die innere Genauigkeit dreidimensionalern Punkthaufen. Zeitschrift für Vermessungswesen, 1965, 90. Jahrgang. Heft 4:109–118

    Google Scholar 

  • Meissl P (1969) Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens. Deutsche Geodät. Komm. Reihe A Nr 61:8–21

    Google Scholar 

  • Penrose R (1955) A generalized inverse for matrices. Proc Cambridge Philos Soc 51:406–413

    Article  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Sansò.

Appendices

Appendix A: Derivation of the minimum trace of covariance solution

To minimize

$$ \phi = tr\left[ {Q_{0} (I + K^{T} K)} \right], $$
(45)

where

$$ Q_{0} = (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (I + K^{T} \varGamma^{\rm T} )^{ - 1} , $$
(46)

we need to set

$$ H_{ij} \equiv \frac{\partial \phi }{{\partial K_{ij} }} = 0,\quad \forall i,j. $$
(47)

The formal rule for differentials gives

$$ d\phi = \sum\limits_{i} {\sum\limits_{j} {\frac{\partial \phi }{{\partial K_{ij} }}dK_{ij} } } = \sum\limits_{i} {\sum\limits_{j} {H_{ij} dK_{ij} } } = \sum\limits_{j} {\sum\limits_{i} {(H^{T} )_{ji} dK_{ij} } } = \sum\limits_{j} {(H^{T} dK)_{jj} } = {\text{tr}}(H^{T} dK). $$
(48)

Therefore, the minimization problem can be solved by determining the matrix \( H = H(K) \), such that \( d\phi = {\text{tr}}(H^{T} dK) \), and then solve the equation \( H(K) = 0 \) for \( K. \)

From \( 0 = dI = d(MM^{ - 1} ) = dMM^{ - 1} + MdM^{ - 1} \) follows that \( dM^{ - 1} = - M^{ - 1} dMM^{ - 1} \), and hence,

$$ d\{ (I + \varGamma K)^{ - 1} \} = - (I + \varGamma K)^{ - 1} \varGamma dK(I + \varGamma K)^{ - 1} , $$
(49)
$$ d\{ (I + K^{T} \varGamma^{\rm T} )^{ - 1} \} = - (I + K^{T} \varGamma^{\rm T} )^{ - 1} dK^{T} \varGamma^{\rm T} (I + K^{T} \varGamma^{\rm T} )^{ - 1} . $$
(50)

Consequently

$$ \begin{aligned} dQ_{0} = d\{ (I + \varGamma K)^{ - 1} \} N_{0}^{ - 1} (I + K^{T} \varGamma^{\rm T} )^{ - 1} + (I + \varGamma K)^{ - 1} N_{0}^{ - 1} d\{ (I + K^{T} \varGamma^{\rm T} )^{ - 1} \} \hfill \\ = - (I + \varGamma K)^{ - 1} \varGamma dK\,Q_{0} - Q_{0} \,dK^{T} \varGamma^{\rm T} (I + K^{T} \varGamma^{\rm T} )^{ - 1} . \hfill \\ \end{aligned} $$
(51)

The differential of the target function \( \phi \) becomes

$$ \begin{aligned} d\phi = {\text{tr}}\left[ {dQ_{0} (I + K^{T} K) + Q_{0} \,dK^{T} K + Q_{0} K^{T} dK} \right] \hfill \\ = {\text{tr}}\left[ { - (I + \varGamma K)^{ - 1} \varGamma dK\,Q_{0} (I + K^{T} K) - Q_{0} \,dK^{T} \varGamma^{\rm T} (I + K^{T} \varGamma^{\rm T} )^{ - 1} (I + K^{T} K) + Q_{0} dK^{T} K + Q_{0} K^{T} dK} \right]. \hfill \\ \end{aligned} $$
(52)

Using the well-known properties \( {\text{tr}}(M^{T} ) = {\text{tr}}(M) \) and \( {\text{tr}}({\text{AB}}) = {\text{tr}}({\text{BA}}), \) we easily arrive at

$$ d\phi = \,tr\left\{ {2Q_{0} \left[ {K^{T} - (I + K^{T} K)(I + \varGamma K)^{ - 1} \varGamma } \right]dK} \right\}. $$
(53)

Comparison with (48) shows that

$$ H = 2\left\{ {K - \varGamma^{T} (I + K^{T} \varGamma^{T} )^{ - 1} (I + K^{T} K)} \right\}Q_{0} , $$
(54)

and since \( \det Q_{0} \ne 0 \), the solution system \( H(K) = 0 \) reduces to

$$ K = \varGamma^{T} (I + K^{T} \varGamma^{T} )^{ - 1} (I + K^{T} K), $$
(55)

which is obviously satisfied by

$$ K = \varGamma^{T} . $$
(56)

To assess the uniqueness of this solution, we transpose and rearrange (55) into

$$ \varGamma = (I + \varGamma {\rm K})(I + K^{T} K)^{ - 1} K^{T} = (I + K^{T} K)^{ - 1} K^{T} + \varGamma {\rm K}(I + K^{T} K)^{ - 1} K^{T} . $$
(57)

Solving for \( \varGamma \) yields

$$ \varGamma = (I + K^{T} K)^{ - 1} K^{T} \left[ {{\rm I} - {\rm K}(I + K^{T} K)^{ - 1} K^{T} } \right]^{ - 1} , $$
(58)

and upon using the easy to prove matrix identity \( (I + KK^{T} )^{ - 1} = {\rm I} - {\rm K}(I + K^{T} K)^{ - 1} K^{T} \)

$$ \varGamma = (I + K^{T} K)^{ - 1} K^{T} (I + KK^{T} ) = (I + K^{T} K)^{ - 1} (K^{T} + K^{T} KK^{T} ) = (I + K^{T} K)^{ - 1} (I + K^{T} K)K^{T} = K^{T} . $$
(59)

Appendix B: Derivation of the minimum norm solution

The target function to be minimized is as follows:

$$ \phi = \left\| x \right\|^{2} = \left[ {\begin{array}{*{20}c} {x_{0} } \\ {x_{c} } \\ \end{array} } \right]^{T} \left[ {\begin{array}{*{20}c} {x_{0} } \\ {x_{c} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {x_{0} } \\ {Kx_{0} + k} \\ \end{array} } \right]^{T} \left[ {\begin{array}{*{20}c} {x_{0} } \\ {Kx_{0} + k} \\ \end{array} } \right] = x_{0}^{T} x_{0} + (Kx_{0} + k)^{T} (Kx_{0} + k) = \mathop {\hbox{min} }\limits_{K,k} , $$
(60)

where also \( x_{0} \) depends on \( K \) and \( k \) through \( x_{0} = (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k) \). Taking into account that

$$ \begin{aligned} \frac{{\partial (I + \varGamma K)^{ - 1} }}{{\partial K_{ij} }} &= - (I + \varGamma K)^{ - 1} \frac{\partial (I + \varGamma K)}{{\partial K_{ij} }}(I + \varGamma K)^{ - 1} \\&= - (I + \varGamma K)^{ - 1} \varGamma \frac{\partial K}{{\partial K_{ij} }}(I + \varGamma K)^{ - 1} \hfill \\ &= - (I + \varGamma K)^{ - 1} \varGamma e_{j} \varepsilon_{i}^{T} (I + \varGamma K)^{ - 1} , \hfill \\ \end{aligned} $$
(61)

where \( e_{j} \), \( \varepsilon_{i} \) are vectors with elements \( (e_{j} )_{k} = \delta_{jk} \) and \( (\varepsilon_{i} )_{k} = \delta_{ik} \), we compute first the partial derivatives

$$ \frac{{\partial x_{0} }}{{\partial K_{ij} }} = \frac{{\partial (I + \varGamma K)^{ - 1} }}{{\partial K_{ij} }}N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k) = - (I + \varGamma K)^{ - 1} \varGamma e_{j} \varepsilon_{i}^{T} (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k), $$
(62)
$$ \frac{{\partial (Kx_{0} + k)}}{{\partial K_{ij} }} = \frac{\partial K}{{\partial K_{ij} }}x_{0} + K\frac{{\partial x_{0} }}{{\partial K_{ij} }} = e_{j} \varepsilon_{i}^{T} x_{0} - K(I + \varGamma K)^{ - 1} \varGamma e_{j} \varepsilon_{i}^{T} (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k). $$
(63)
$$ \frac{{\partial x_{0} }}{\partial k} = - (I + \varGamma K)^{ - 1} N_{0}^{ - 1} N_{0} \varGamma = - (I + \varGamma K)^{ - 1} \varGamma , $$
(64)
$$ \frac{{\partial (Kx_{0} + k)}}{\partial k} = K\frac{{\partial x_{0} }}{\partial k} + I = - K(I + \varGamma K)^{ - 1} \varGamma + I. $$
(65)

To obtain the minimum norm solution, we must set the derivatives of the target function \( \phi \) with respect to the vector \( k \) and all elements of the matrix \( K \) equal to zero. For the elements of \( K \), we obtain

$$ \begin{aligned} \frac{1}{2}\frac{\partial \phi }{{\partial K_{ij} }} & = x_{0}^{T} \frac{{\partial x_{0} }}{{\partial K_{ij} }} + (Kx_{0} + k)^{T} \frac{{\partial (Kx_{0} + k)}}{{\partial K_{ij} }} \\ = - x_{0}^{T} (I + \varGamma K)^{ - 1} \varGamma e_{j} \varepsilon_{i}^{T} (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k) \\ + (Kx_{0} + k)^{T} \left\{ {e_{j} \varepsilon_{i}^{T} x_{0} - K(I + \varGamma K)^{ - 1} \varGamma e_{j} \varepsilon_{i}^{T} (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k)} \right\} \\ = - x_{0}^{T} (I + \varGamma K)^{ - 1} \varGamma e_{j} \varepsilon_{i}^{T} (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k) \\ + (Kx_{0} + k)^{T} e_{j} \varepsilon_{i}^{T} x_{0} - (Kx_{0} + k)^{T} K(I + \varGamma K)^{ - 1} \varGamma e_{j} \varepsilon_{i}^{T} (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k) \\ = - e_{j}^{T} \varGamma^{T} (I + \varGamma K)^{ - T} x_{0} (u_{0} - N_{0} \varGamma k)^{T} N_{0}^{ - 1} (I + \varGamma K)^{ - T} \varepsilon_{i} \\ + e_{j}^{T} (Kx_{0} + k)x_{0}^{T} \varepsilon_{i} - e_{j}^{T} \varGamma^{T} (I + \varGamma K)^{ - T} K^{T} (Kx_{0} + k)(u_{0} - N_{0} \varGamma k)^{T} N_{0}^{ - 1} (I + \varGamma K)^{ - T} \varepsilon_{i} = 0, \\ \end{aligned} $$
(66)

which for all \( i \) and \( j \) leads to

$$ \begin{aligned} - \varGamma^{T} (I + \varGamma K)^{ - T} x_{0} (u_{0} - N_{0} \varGamma k)^{T} N_{0}^{ - 1} (I + \varGamma K)^{ - T} \hfill \\ + (Kx_{0} + k)x_{0}^{T} - \varGamma^{T} (I + \varGamma K)^{ - T} K^{T} (Kx_{0} + k)(u_{0} - N_{0} \varGamma k)^{T} N_{0}^{ - 1} (I + \varGamma K)^{ - T} = 0. \hfill \\ \end{aligned} $$
(67)

From \( x_{0} = (I + \varGamma K)^{ - 1} N_{0}^{ - 1} (u_{0} - N_{0} \varGamma k) \) follows that \( (u_{0} - N_{0} \varGamma k) = N_{0} (I + \varGamma K)x_{0} \), which replaced above gives

$$ - \varGamma^{T} (I + \varGamma K)^{ - T} x_{0} x_{0}^{T} + (Kx_{0} + k)x_{0}^{T} - \varGamma^{T} (I + \varGamma K)^{ - T} K^{T} (Kx_{0} + k)x_{0}^{T} = 0. $$
(68)

For the elements of \( k \), we obtain

$$ \frac{1}{2}\frac{\partial \phi }{\partial k} = x_{0}^{T} \frac{{\partial x_{0} }}{\partial k} + (Kx_{0} + k)^{T} \frac{{\partial (Kx_{0} + k)}}{\partial k} = - x_{0}^{T} (I + \varGamma K)^{ - 1} \varGamma + (Kx_{0} + k)^{T} (I - K(I + \varGamma K)^{ - 1} \varGamma ) = 0. $$
(69)

Thus, the minimum norm solution is obtained for the values of \( K \) and \( k \), which satisfy the system

$$ - \varGamma^{T} (I + \varGamma K)^{ - T} x_{0} x_{0}^{T} + (Kx_{0} + k)x_{0}^{T} - \varGamma^{T} (I + \varGamma K)^{ - T} K^{T} (Kx_{0} + k)x_{0}^{T} = 0, $$
(70)
$$ - \varGamma^{T} (I + \varGamma K)^{ - T} x_{0} + [I - \varGamma^{T} (I + \varGamma K)^{ - T} K^{T} ](Kx_{0} + k) = 0. $$
(71)

It is easy to see that this system is satisfied by \( K = \varGamma^{T} \) and \( k = 0. \) Indeed, for these values, the right-hand side of (B11) becomes

$$ - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} x_{0} x_{0}^{T} + \varGamma^{T} x_{0} x_{0}^{T} - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} \varGamma \varGamma^{T} x_{0} x_{0}^{T} = - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} (I + \varGamma \varGamma^{T} )x_{0} x_{0}^{T} + \varGamma^{T} x_{0} x_{0}^{T} = 0, $$
(71)

while the right-hand side of (B12) becomes

$$ \begin{aligned} - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} x_{0} + \left[ {I - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} \varGamma } \right]\varGamma^{T} x_{0} & = - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} x_{0} + \varGamma^{T} x_{0} - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} \varGamma \varGamma^{T} x_{0} \\ = \varGamma^{T} x_{0} - \varGamma^{T} (I + \varGamma \varGamma^{T} )^{ - 1} (I + \varGamma \varGamma^{T} )x_{0} = 0, \\ \end{aligned} $$
(72)

and this completes the proof.

Appendix C: Proof of equivalence of new and classical solutions

Since the minimum trace and the minimum norm solutions are simply special cases (\( C \to E \),\( k \to 0 \)) of the general least-squares solution, we need to prove the equivalence of new and classical formulas only for the general case.

To compare the new and classical old solution, which we will now symbolize with \( \hat{x}_{\text{NEW}} \) and \( \hat{x}_{\text{OLD}} \), respectively, for the sake of distinction, we will rewrite (4) in the form

$$ \hat{x}_{\text{NEW}} = \left[ {\begin{array}{*{20}c} {\hat{x}_{0} } \\ {\hat{x}_{c} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {(I + \varGamma K)^{ - 1} (N_{0}^{ - 1} u_{0} - \varGamma k)} \\ {K(I + \varGamma K)^{ - 1} (N_{0}^{ - 1} u_{0} - \varGamma k) + k} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} I \\ K \\ \end{array} } \right](I + \varGamma K)^{ - 1} (N_{0}^{ - 1} u_{0} - \varGamma k) + \left[ {\begin{array}{*{20}c} 0 \\ k \\ \end{array} } \right]. $$
(73)

Instead of comparing (73) with the classical solution

$$ \hat{x}_{\text{OLD}} = (N + CC^{T} )^{ - 1} u + E(C^{T} E)^{ - 1} d, $$
(74)

we will multiply them both from the left with the same non-singular matrix \( (N + CC^{T} ), \) and we will compare instead

$$ (N + CC^{T} )\hat{x}_{NEW} = (N + CC^{T} )\left[ {\begin{array}{*{20}c} I \\ K \\ \end{array} } \right](I + \varGamma K)^{ - 1} (N_{0}^{ - 1} u_{0} - \varGamma k) + (N + CC^{T} )\left[ {\begin{array}{*{20}c} 0 \\ k \\ \end{array} } \right], $$
(75)

with

$$ (N + CC^{T} )\hat{x}_{OLD} = u + (N + CC^{T} )E(C^{T} E)^{ - 1} d. $$
(76)

To this purpose, we note that

$$ N = \left[ {\begin{array}{*{20}c} {A_{0}^{T} PA_{0} } & {A_{0}^{T} PA_{c} } \\ {A_{c}^{T} PA_{0} } & {A_{c}^{T} PA_{c} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {A_{0}^{T} PA_{0} } & {A_{0}^{T} PA_{0} \varGamma } \\ {\varGamma^{T} A_{0}^{T} PA_{0} } & {\varGamma^{T} A_{0}^{T} PA_{0} \varGamma } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {N_{0} } & {N_{0} \varGamma } \\ {\varGamma^{T} N_{0} } & {\varGamma^{T} N_{0} \varGamma } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]N_{0} \left[ {\begin{array}{*{20}c} I & \varGamma \\ \end{array} } \right], $$
(77)

and

$$ u = \left[ {\begin{array}{*{20}c} {A_{0}^{T} Py^{ob} } \\ {A_{c}^{T} Py^{ob} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {A_{0}^{T} Py^{ob} } \\ {\varGamma^{T} A_{0}^{T} Py^{ob} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {u_{0} } \\ {\varGamma^{T} u_{0} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {u_{0} } \\ { - E_{c}^{ - T} E_{0}^{T} u_{0} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]u_{0} , $$
(78)

while recalling that \( K = - C_{c}^{ - T} C_{0}^{T} , \) \( k = C_{c}^{ - T} d, \) \( \varGamma = - E_{0} E_{c}^{ - 1} \)

$$ C^{T} \left[ {\begin{array}{*{20}c} I \\ K \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {C_{0}^{T} } & {C_{c}^{T} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} I \\ { - C_{c}^{ - T} C_{0}^{T} } \\ \end{array} } \right] = C_{0}^{T} - C_{c}^{T} C_{c}^{ - T} C_{0}^{T} = 0, $$
(79)
$$ C^{T} \left[ {\begin{array}{*{20}c} 0 \\ k \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {C_{0}^{T} } & {C_{c}^{T} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ {C_{c}^{ - T} d} \\ \end{array} } \right] = C_{c}^{T} C_{c}^{ - T} d = d, $$
(80)
$$ \left[ {\begin{array}{*{20}c} I & \varGamma \\ \end{array} } \right]E = \left[ {\begin{array}{*{20}c} I & { - E_{0} E_{c}^{ - 1} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {E_{0} } \\ {E_{c} } \\ \end{array} } \right] = E_{0} - E_{0} E_{c}^{ - 1} E_{c} = 0. $$
(81)

Considering the above relations, direct calculation gives

$$ \begin{aligned} (N + CC^{T} )\hat{x}_{\text{NEW}} &= N\left[ {\begin{array}{*{20}c} I \\ K \\ \end{array} } \right](I + \varGamma K)^{ - 1} (N_{0}^{ - 1} u_{0} - \varGamma k) \\ &\,\,+ CC^{T} \left[ {\begin{array}{*{20}c} I \\ K \\ \end{array} } \right](I + \varGamma K)^{ - 1} (N_{0}^{ - 1} u_{0} - \varGamma k) + N\left[ {\begin{array}{*{20}c} 0 \\ k \\ \end{array} } \right] + CC^{T} \left[ {\begin{array}{*{20}c} 0 \\ k \\ \end{array} } \right] \\ &= \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]N_{0} \left[ {\begin{array}{*{20}c} I \varGamma \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} I \\ K \\ \end{array} } \right](I + \varGamma K)^{ - 1} (N_{0}^{ - 1} u_{0} - \varGamma k) + \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]N_{0} \left[ {\begin{array}{*{20}c} I \varGamma \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ k \\ \end{array} } \right] + Cd \\ &= \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]N_{0} (N_{0}^{ - 1} u_{0} - \varGamma k) + \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]N_{0} \varGamma k + Cd \\ &= \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]u_{0} + Cd. \\ \end{aligned} $$
(82)

Noting that (77) and (81) imply the well-known relation \( NE = 0, \) we obtain

$$ (N + CC^{T} )\hat{x}_{OLD} = u + (N + CC^{T} )E(C^{T} E)^{ - 1} d = u + NE(C^{T} E)^{ - 1} d + CC^{T} E(C^{T} E)^{ - 1} d = u + Cd, $$
(83)

Which, in view of (78), becomes

$$ (N + CC^{T} )\hat{x}_{\text{OLD}} = \left[ {\begin{array}{*{20}c} I \\ {\varGamma^{T} } \\ \end{array} } \right]u_{0} + Cd. $$
(84)

Comparing (82) with (84), it follows that \( (N + CC^{T} )\hat{x}_{\text{NEW}} = (N + CC^{T} )\hat{x}_{\text{OLD}} \), and hence, \( \hat{x}_{\text{NEW}} = \hat{x}_{\text{OLD}} , \) which proves the equivalence of the two solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dermanis, A., Sansò, F. Different equivalent approaches to the geodetic reference system. Rend. Fis. Acc. Lincei 29 (Suppl 1), 11–22 (2018). https://doi.org/10.1007/s12210-017-0650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-017-0650-y

Keywords

Navigation