Skip to main content
Log in

Topology optimization design of non-Newtonian roller-type viscous micropumps

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The paper studies the two-dimensional roller-type viscous micropumps design problem using a level set based topology optimization method. The flow in the viscous micropumps is considered as non-Newtonian flow approximated by the power-law constitutive model. The optimization objective is to minimize the flow viscous dissipation and maximize the flow rate subject to the area constraint. Topology optimization of several roller-type viscous micropumps is numerically investigated by using the presented level set based optimization method. The results show that (1) the optimal long viscous micropump has a higher flow rate; (2) the optimal short viscous micropumps with different flow rates can achieve lower viscous dissipations; (3) the optimal design of the non-Newtonian fluid viscous micropump with a bigger power-law index has a wider gap on the top of the rotor to accommodate a higher flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdelgawad M, Hassan I, Esmail N (2004) Transient behavior of the viscous micropump. Microscale Thermophys Eng 8:361–381

    Article  Google Scholar 

  • Abdelgawad M, Hassan I, Esmail N, Phutthavong P (2005) Numerical investigation of multistage viscous micropump configurations. J Fluids Eng 127:734–742

    Article  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Amstutz S (2005) The topological asymptotic for the Navier–Stokes equations. ESAIM: Contrl Optim Calc Var 11:401–425

    Article  MathSciNet  MATH  Google Scholar 

  • Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Meth Fluids 61:498–513

    Article  MathSciNet  MATH  Google Scholar 

  • Bataineh KM, Al-Nimr MA (2009) 2D navier–stokes simulations of microscale viscous pump with slip flow. J Fluids Eng 131:051105-1–7

    Article  Google Scholar 

  • Blanchard D, Ligrani P (2006) Comparisons of different viscous pumps based on physical flow behavior. Sens Actuators, A 126:83–92

    Article  Google Scholar 

  • Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int Numer Meth Eng 79:1284–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Su J, Li K, Wang S (2014) A characteristic projection method for incompressible thermal flow. Numer Heat Tr B-Fund 65:554–590

    Article  Google Scholar 

  • Choi H-I, Lee Y, Choi D-H, Maeng J-S (2010) Design optimization of a viscous micropump with two rotating cylinders for maximizing efficiency. Struct Multidiscip O 40:537–548

    Article  Google Scholar 

  • da Silva AK, Kobayashi MH, Coimbra CFM (2007a) Optimal design of non-Newtonian, micro-scale viscous pumps for biomedical devices. Biotechnol Bioeng 96:37–47

    Article  Google Scholar 

  • da Silva AK, Kobayashi MH, Coimbra CFM (2007b) Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption. Int J Heat Fluid Flow 28:526–536

    Article  Google Scholar 

  • Decourtye D, Sen M, Gad-El-Hak M (1998) Analysis of viscous micropumps and microturbines. Int J Comput Fluid D 10:13–25

    Article  MATH  Google Scholar 

  • Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier–Stokes flows. J Comput Phys 230:6688–6708

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y, Liu Z, Zhang P, Liu Y, Gao Q, Wu Y (2012) A flexible layout design method for passive micromixers. Biomed Microdevices 14:929–945

    Article  Google Scholar 

  • Deng Y, Liu Z, Wu J, Wu Y (2013a) Topology optimization of steady Navier–Stokes flow with body force. Comput Method Appl M 255:306–321

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Y, Liu Z, Wu Y (2013b) Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces. Struct Multidiscip O 47:555–570

    Article  MathSciNet  MATH  Google Scholar 

  • Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649

    Article  Google Scholar 

  • Duan XB, Ma YC, Zhang R (2008a) Optimal shape control of fluid flow using variational level set method. Phys Lett A 372:1374–1379

    Article  MathSciNet  MATH  Google Scholar 

  • Duan XB, Ma YC, Zhang R (2008b) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487–499

    Article  MathSciNet  MATH  Google Scholar 

  • Duan XB, Ma YC, Zhang R (2008c) Shape-topology optimization of stokes flow via variational level set method. Appl Math Comput 202:200–209

    MathSciNet  MATH  Google Scholar 

  • Ejlebjerg Jensen K, Szabo P, Okkels F (2012) Topology optimization of viscoelastic rectifiers. Appl Phys Lett 100:234102-234102-234103

  • http://www.freefem.org/ff++/

  • Hyun J, Wang S, Yang S (2014) Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear stress. Comput Math Appl 67:1154–1170

    Article  MathSciNet  Google Scholar 

  • Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174

    Article  Google Scholar 

  • Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip O 46:311–326

    Article  MathSciNet  MATH  Google Scholar 

  • Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip O 42:495–516

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  • Maatoug H (2006) Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 5:216–229

    Google Scholar 

  • Nabavi M (2009) Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review. Microfluid Nanofluid 7:599–619

    Article  Google Scholar 

  • Nguyen NT, Huang XY, Chuan TK (2002) MEMS-micropumps: A review. J Fluids Eng 124:384–392

    Article  Google Scholar 

  • Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75:016301

    Article  Google Scholar 

  • Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Peng D, Merriman B, Osher S, Zhao H, Kang M (1999) A PDE-based fast local level set method. J Comput Phys 155:410–438

    Article  MathSciNet  MATH  Google Scholar 

  • Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350

    Article  MathSciNet  MATH  Google Scholar 

  • Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  Google Scholar 

  • Romero J, Silva E (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Method Appl M 279:268–300

    Article  MathSciNet  Google Scholar 

  • Sen M, Wajerski D, GadelHak M (1996) A novel pump for MEMS applications. J Fluids Eng 118:624–627

    Article  Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press

  • Sharatchandra MC, Sen M, GadelHak M (1997) Navier–Stokes simulations of a novel viscous pump. J Fluids Eng 119:372–382

    Article  Google Scholar 

  • Sharatchandra MC, Sen M, Gad-el-Hak M (1998a) New approach to constrained shape optimization using genetic algorithms. AIAA J 36:51–61

    Article  MATH  Google Scholar 

  • Sharatchandra MC, Sen M, Gad-el-Hak M (1998b) Thermal aspects of a novel viscous pump. J Heat Transfer 120:99–107

    Article  Google Scholar 

  • Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159

    Article  MATH  Google Scholar 

  • Walburn FJ, Schneck DJ (1976) A constitutive equation for whole human blood. Biorheology 13:201–210

    Google Scholar 

  • Wang MY (2005) Shape optimization with level set method incorporating topological derivatives. in: Sixth Congresses of Struc Multidisc Optim

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Method Appl M 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang B, Liu X (2015) Topology optimization study of arterial bypass configurations using the level set method. Struct Multidiscip O 51:773–798

    Article  MathSciNet  Google Scholar 

  • Zhang B, Liu XM, Sun JJ (2013) Topology optimization for Stokes problem under multiple flow cases using an improved level set method. Proceedings of the ASME FEDSM2013, Paper FEDSM2013-16155, Nevada, USA

  • Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195

    Article  MathSciNet  MATH  Google Scholar 

  • Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Del Rev 56:145–172

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 11272251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Liu, X. & Sun, J. Topology optimization design of non-Newtonian roller-type viscous micropumps. Struct Multidisc Optim 53, 409–424 (2016). https://doi.org/10.1007/s00158-015-1346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1346-5

Keywords

Navigation