Skip to main content
Log in

Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In recent research, there has been a growing interest in the analysis of flow through microdiffusers and micropumps in order to characterize and optimize the performance of these devices. In this review, the recent advances in the numerical and experimental analysis of the steady and pulsating flows through microdiffusers and valveless micropumps are surveyed. The differences between the performance of microdiffusers and micropumps in steady and unsteady flow regimes are described. Qualitative and quantitative discussions of the effects of different design parameters on the performance of microdiffusers and valveless micropumps in both steady and unsteady flow regimes along with the contradictory results reported in the literature in this regard are provided. In addition, a summary of the latest micropump technologies along with the advantages and disadvantages of each mechanism with the emphasis on the innovative and less-reviewed micropumps are presented. Two important types of fixed microvalves, as part of valveless micropumps are described in details. Experimental flow visualization of steady and pulsating flows through microdiffusers and micropumps as a useful tool for better understanding the underlying micro-fluid dynamics is discussed. The present review reveals that there are many possible areas of research in the field of steady and unsteady flows through microdiffusers and micropumps in order to understand the effects of all important design parameters on the performance of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

u :

Velocity in x direction (m/s)

v :

Velocity in y direction (m/s)

u max :

Maximum velocity in x direction (m/s)

Q :

Volumetric flow rate (m3/s)

Q net :

Net flow rate (m3/s)

ρ:

Density (kg/m3)

p :

Pressure (Pa)

p 0 :

Static pressure (Pa)

t :

Time (s)

x :

Axial position (m)

y :

Transverse position (m)

T :

Excitation period (s)

μ:

Shear viscosity (kg/m s)

ν:

Kinematic viscosity (m2/s)

Re = u max D h /ν:

Reynolds number

St = ω D h /u max :

Strouhal number

Ro = ω D 2 h /ν = Re.St :

Roshko number

Wo = D h /δ:

Womersley number

V :

Volume-average velocity (m/s)

P :

Maximum pressure (Pa)

Δp :

Frictional pressure drop (Pa)

η:

Diffuser efficiency

ηmax :

Maximum diffuser efficiency

ξ d :

Total pressure loss coefficient in the diffuser direction

ξ n :

Total pressure loss coefficient in the nozzle direction

ξ ij :

Pressure loss coefficient across segment ij

θ:

Diffuser divergence angle (degree)

f :

Excitation frequency (Hz)

ω:

Angular frequency (rad/s)

D h :

Hydraulic diameter of the microdiffuser at the inlet (m)

Z :

Flow impedance (kg/m4 s)

R :

Flow resistance (kg/m4 s)

I :

Flow inductance (kg/m4)

Z d :

Flow impedance in the diffuser direction (kg/m4 s)

R d :

Flow resistance in the diffuser direction (kg/m4 s)

I d :

Flow inductance in the diffuser direction (kg/m4)

Z n :

Flow impedance in the nozzle direction (kg/m4 s)

R n :

Flow resistance in the nozzle direction (kg/m4 s)

I n :

Flow inductance in the nozzle direction (kg/m4)

λ:

Acoustic wavelength (m)

V net :

Sectional net velocities (m/s)

A :

Sectional area (m2)

δ:

Stokes layer thickness (m)

L :

Diffuser length (m)

α:

Kinetic-energy correction factor

References

  • Ahmadian M, Saidi M, Mehrabian A, Bazargan M, Kenarsari S (2006) Performance of valveless diffuser micropumps under harmonic piezoelectric actuation. In: ASME Conference on engineering systems design and analysis

  • Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666

    Article  Google Scholar 

  • Andersson H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B 72:259–265

    Article  Google Scholar 

  • Bae B, Kim N, Kee H, Kim S, Lee Y, Lee S, Park K (2002) Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment. J Microelectromech Syst 11:344–354

    Article  Google Scholar 

  • Bennett M, Leo D (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A 115:79–90

    Article  Google Scholar 

  • Brufau-Penella J, Tsiakmakis K, Laopoulos T, Puig-Vidal M (2008) Model reference adaptive control for an ionic polymer metal composite in underwater applications. Smart Mater Struct 17:045–020

    Google Scholar 

  • Cecchini M, Girardo S, Pisignano D, Cingolani R, Beltram F (2008) Acoustic-counterflow microfluidics by surface acoustic waves. Appl Phys Lett 92:104–103

    Article  Google Scholar 

  • Chen Y, Kang S, Wu L, Lee S (2008) Fabrication and investigation of pdms micro-diffuser/nozzle. J Mater Process Technol 198:478–484

    Article  Google Scholar 

  • Cheng H, Chien C (2008) Ejection characteristics of micropumps for motorcycle fuel atomizer in high-temperature environment. Appl Therm Eng 28:94–109

    Article  Google Scholar 

  • Cui Q, Liu C, Zha X (2007) Study on a piezoelectric micropump for controlled drug delivery system. Microfluid Nanofluid 3:377–390

    Article  Google Scholar 

  • Cui Q, Liu C, Zha X (2008) Simulation and optimization of a piezoelectric micropump for medical applications. Int J Adv Manuf Technol 36:516–524

    Article  Google Scholar 

  • Dario P, Crocey N, Carrozzay M, Varalloz G (1996) A fluid handling system for a chemical microanalyzer. J Micromech Microeng 6:95–98

    Article  Google Scholar 

  • Dario P, Carrozza M, Benvenuto A, Menciassi A (2000) Micro-systems in biomedical applications. J Micromech Microeng 10:235–244

    Article  Google Scholar 

  • da Silva A, Kobayashi M, Coimbra C (2007) Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption. Int J Heat Fluid Flow 28:526–536

    Article  Google Scholar 

  • Deshpande M, Gilbert J, Bardell R, Forster F (1998) Design analysis of no-moving-parts valves for micropumps. J Microelectromech Syst DSC 66:153–158

    Google Scholar 

  • Dopper J, Clemens M, Ehrfeld W, Jung S, Kamper K, Lehr H (1997) Micro gear pumps for dosing of viscous fluids. J Micromech Microeng 7:230–232

    Article  Google Scholar 

  • Du X, Swanwick M, Fu Y, Luo J, Flewitt A, Lee D, Maeng S, Milne W (2009) Surface acoustic wave induced streaming and pumping in 128° y−cut LiNbo3 for microfluidic applications. J Micromech Microeng 19:035–016

    Google Scholar 

  • Ehlert S, Hlushkou D, Tallarek U (2008) Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device. Microfluid Nanofluid 4:471–487

    Article  Google Scholar 

  • Erickson D (2005) Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid Nanofluid 1:301–318

    Article  Google Scholar 

  • Fair R (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    Article  Google Scholar 

  • Fan B, Song G, Hussain F (2005) Simulation of a piezoelectrically actuated valveless micropump. Smart Mater Struct 14:400–405

    Article  Google Scholar 

  • Feldt C, Chew L (2002) Geometry-based macro-tool evaluation of non-moving-part valvular microchannels. J Micromech Microeng 12:662–669

    Article  Google Scholar 

  • Forster F, Bardell R, Afromowitz M, Sharma N, Blanchard A (1995) Design, fabrication and testing of fixed-valve micro-pumps. In: Proceedings of the ASME fluids engineering division

  • Forster F, Bardell R, Sharma N (2001) Methods for making micropumps. US Patent 6227809 B1

  • Garimella S, Singhal V, Liu D (2006) On-chip thermal management with microchannel heat sinks and integrated micropumps. Proc IEEE 94:1534–1548

    Google Scholar 

  • Gerlach T (1998) Microdiffusers as dynamic passive valves for micropump applications. Sens Actuators A 69:181–191

    Article  Google Scholar 

  • Gerlach T, Schuenemann M, Wurmus H (1995) A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves. J Micromech Microeng 5:199–201

    Article  Google Scholar 

  • Guttenberg Z, Rathgeber A, Keller S, Rädler J, Wixforth A, Kostur M, Schindler M, Talkner P (2004) Flow profiling of a surface-acoustic-wave nanopump. Phys Rev E 70:056–311

    Article  Google Scholar 

  • Haik Y, Kilani M, Hendrix J, Rifai O, Galambos P (2007) Flow field analysis in a spiral viscous micropump. Microfluid Nanofluid 3:527–535

    Article  Google Scholar 

  • Hsieh S, Lin C, Huang C, Tsai H (2004) Liquid flow in a micro-channel. J Micromech Microeng 14:436–445

    Article  Google Scholar 

  • Hsu Y, Le N (2008) Equivalent electrical network for performance characterization of piezoelectric peristaltic micropump. Microfluid Nanofluid. doi:101007/s10404-008-0380-7

  • Hsu C, Sheen H (2008) A microfluidic flow-converter based on a double-chamber planar micropump. Microfluid Nanofluid. doi:101007/s10404-008-0347-8

  • Hsu Y, Lin S, Hou S (2007) Development of peristaltic antithrombogenic micropumps for in vitro and ex vivo blood transportation tests. Microsyst Technol 14:31–41

    Article  Google Scholar 

  • Hu J, Tan C, Hu W (2007a) Ultrasonic microfluidic transportation based on a twisted bundle of thin metal wires. Sens Actuators A 135:811–817

    Article  Google Scholar 

  • Hu Y, Xuan X, Werner C, Li D (2007b) Electroosmotic flow in microchannels with prismatic elements. Microfluid Nanofluid 3:151–160

    Article  Google Scholar 

  • Hwang I, An J, Ko K, Shin S, Lee J (2007) A novel micropump with fixed-geometry valves and low leakage flow. J Micromech Microeng 17:1632–1639

    Article  Google Scholar 

  • Hwang I, Lee S, Shin S, Lee Y, Lee J (2008) Flow characterization of valveless micropump using driving equivalent moment: theory and experiments. Microfluid Nanofluid 5:795–807

    Article  Google Scholar 

  • Iverson B, Garimella S (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid. doi:101007/s10404-008-0266-8

  • Izzo I, Accoto D, Menciassi A, Schmitt L, Dario P (2007) Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sens Actuators A 133:128–140

    Article  Google Scholar 

  • Jang L, Kan W (2007) Peristaltic piezoelectric micropump system for biomedical applications. Biomedical Microdevices 9:619–626

    Article  Google Scholar 

  • Jang L, Yu Y (2008) Peristaltic micropump system with piezoelectric actuators. Microsyst Technol 14:241–248

    Article  Google Scholar 

  • Jeong J, Kim C (2007) A numerical simulation on diffuser-nozzle based piezoelectric micropumps with two different numerical models. Int J Numer Methods Fluids 53:561–571

    Article  MATH  Google Scholar 

  • Jiang X, Zhou Z, Huang X, Li Y, Yang Y, Liu C (1998) Micronozzle/diffuser flow and its application in micro valveless pumps. Sens Actuators A 70:81–87

    Article  Google Scholar 

  • Jiang L, Mikkelsen J, Koo J, Huber D, Yao S, Zhang L, Zhou P, Maveety J, Prasher R, Santiago J, Kenny T, Goodson K (2002) Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans Compon Packag Technol 25:347–355

    Article  Google Scholar 

  • Junwu K, Zhigang Y, Taijiang P, Guangming C, Boda W (2005) Design and test of a high-performance piezoelectric micropump for drug delivery. Sens Actuators A 121:156–161

    Article  Google Scholar 

  • Koch M, Evans A, Brunnschweiler A (1998) The dynamic micropump driven with a screen printed PZT actuator. J Micromech Microeng 8:119–122

    Article  Google Scholar 

  • Kohl M, Abdel-Khalik S, Jeter S, Sadowski D (2005) An experimental investigation of microchannel flow with internal pressure measurements. Int J Heat Mass Transf 48:1518–1533

    Article  Google Scholar 

  • Laser D, Santiago J (2004) A review of micropumps. J Micromech Microeng 14:r35–r64

    Article  Google Scholar 

  • LaVan D, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    Article  Google Scholar 

  • Lee J, Li D (2006) Electroosmotic flow at a liquid–air interface. Microfluid Nanofluid 2:361–365

    Article  Google Scholar 

  • Lee S, Kim S (2009) Advanced particle-based velocimetry techniques for microscale flows. Microfluid Nanofluid 6:577–588

    Google Scholar 

  • Li H, Roberts D, Steyn J, Turner K, Yaglioglu O, Hagood N, Spearing S, Schmidt M (2004) Fabrication of a high frequency piezoelectric microvalve. Sens Actuators A 111:51–56

    Article  Google Scholar 

  • Li B, Chen Q, Lee D, Woolman J, Carman G (2005) Development of large flow rate, robust, passive micro check valves for compact piezoelectrically actuated pumps. Sens Actuators A 117:325–330

    Article  Google Scholar 

  • Lien K, Liu C, Lin Y, Kuo P, Lee G (2008) Extraction of genomic dna and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform. Microfluid Nanofluid. doi:101007/s10404-008-0337-x

  • Ma B, Liu S, Gan Z, Liu G, Cai X, Zhang H, Yang Z (2006) A pzt insulin pump integrated with a silicon microneedle array for transdermal drug delivery. Microfluid Nanofluid 2:417–423

    Article  Google Scholar 

  • Ma H, Chen B, Lin C, Gao J (2008) The improved performance of one-side actuating diaphragm micropump for a liquid cooling system. Int Commun Heat Mass Transf 35:957–966

    Article  Google Scholar 

  • Ma H, Chen B, Gao J, Lin C (2009) Development of an OAPCP-micropump liquid cooling system in a laptop. Int Commun Heat Mass Transf 36:225–232

    Article  Google Scholar 

  • Machauf A, Nemirovsky Y, Dinnar U (2005) A membrane micropump electrostatically actuated across the working fluid. J Micromech Microeng 15:2309–2316

    Article  Google Scholar 

  • Mala G, Li D (1999) Flow characteristics of water in microtubes. Int J Heat Fluid Flow 20:142–148

    Article  Google Scholar 

  • Maruo S, Inoue H (2007) Optically driven viscous micropump using a rotating microdisk. Appl Phys Lett 91:084101

    Article  Google Scholar 

  • Morris C, Forster F (2000) Optimization of a circular piezoelectric bimorph for a micropump driver. J Micromech Microeng 10:459–465

    Article  Google Scholar 

  • Morris C, Forster F (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334

    Article  Google Scholar 

  • Mugele F, Baret J (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:705–774

    Article  Google Scholar 

  • Nabavi M, Mongeau L (2009) Numerical analysis of high frequency pulsating flows through a diffuser-nozzle element in valveless acoustic micropumps. Microfluid Nanofluid. doi:101007/s10404-009-0427-4

  • Nabavi M, Siddiqui K, Dargahi J (2007a) A new 9-point sixth-order accurate compact finite difference method for the Helmholtz equation. J Sound Vib 307:972–982

    Article  Google Scholar 

  • Nabavi M, Siddiqui K, Dargahi J (2007b) Simultaneous measurement of acoustic and streaming velocities using the synchronized PIV technique. Meas Sci Technol 18:1811–1817

    Article  Google Scholar 

  • Nabavi M, Siddiqui K, Dargahi J (2008a) Analysis of the flow structure inside the valveless standing wave pump. Phys Fluids 20:126101

    Article  Google Scholar 

  • Nabavi M, Siddiqui K, Dargahi J (2008b) A fourth-order accurate scheme for solving one-dimensional highly nonlinear standing wave equation in different thermoviscous fluids. J Comput Acoust 16:563–576

    Article  MathSciNet  Google Scholar 

  • Nguyen B, Kassegne S (2008) High-current density dc magenetohydrodynamics micropump with bubble isolation and release system. Microfluid Nanofluid 5:383–393

    Article  Google Scholar 

  • Ogawa J, Kanno I, Kotera H, Wasa K, Suzuki T (2009) Development of liquid pumping devices using vibrating microchannel walls. Sens Actuators A 152:211–218

    Google Scholar 

  • Oh K, Ahn C (2006) A review of microvalves. J Micromech Microeng 16:R13–R39

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sens Actuators A 46:549–556

    Article  Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1996a) A valve-less planar pump isotropically etched in silicon. J Micromech Microeng 6:87–91

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1996b) Diffuser-element design investigation for valve-less pumps. Sens Actuators A 57:137–143

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1999) A numerical design study of the valveless diffuser pump using lumped-mass model. J Micromech Microeng 9:34–44

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sens Actuators A 84:165–175

    Article  Google Scholar 

  • Pal R, Yang M, Johnson B, Burke D, Burns M (2004) Phase change microvalve for integrated devices. Anal Chem 76:3740–3748

    Article  Google Scholar 

  • Pan L, Ng T, Liu G, Lam K, Jiang T (2001) Analytical solution for the dynamic analysis of a valveless micropump: a fluid-membrane coupling study. Sens Actuators A 93:173–181

    Article  Google Scholar 

  • Park H, Lim J (2008) A reduced-order model of the low-voltage cascade electroosmotic micropump. Microfluid Nanofluid. doi:101007/s10404-008-0326-0

  • Park J, Yoshida K, Yokota S (1999) Resonantly driven piezoelectric micropump fabrication of a micropump having high power density. Mechatronics 9:687–702

    Article  Google Scholar 

  • Paul B, Terhaar T (2000) Comparison of two passive microvalve designs for microlamination architectures. J Micromech Microeng 10:15–20

    Article  Google Scholar 

  • Peng X, Peterson G, Wang B (1994) Heat transfer charactheristics of water flowing through microchannels. Exp Heat Transf 7:265–283

    Google Scholar 

  • Renaudin A, Tabourier P, Zhang V, Camart J, Druon C (2006) SAW nanopump for handling droplets in view of biological applications. Sens Actuators B 113:389–397

    Article  Google Scholar 

  • Rich C, Wise K (2003) A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing. J Microelectromech Syst 12:201–208

    Article  Google Scholar 

  • Schabmueller C, Koch M, Mokhtari M, Evans A, Brunnschweiler A, Sehr H (2002) Self-aligning gas/liquid micropump. J Micromech Microeng 12:420–424

    Article  Google Scholar 

  • Seibel K, Schler L, SchSfer H, Bhm M (2008) A programmable planar electroosmotic micropump for lab-on-a-chip applications. J Micromech Microeng 18:025008

    Article  Google Scholar 

  • Sen M, Wajerski D, el Hak MG (1996) A novel pump for MEMS applications. J Fluids Eng 118:624–627

    Article  Google Scholar 

  • Sharatchandra M, Sen M, el Hak MG (1997) Navier stokes simulations of a novel viscous pump. J Fluids Eng 119:372–382

    Article  Google Scholar 

  • Sheen H, Hsu C, Wu T, Chu H, Chang C, Lei U (2007) Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer. Sens Actuators A 139:237–244

    Article  Google Scholar 

  • Sheen H, Hsu C, Wu T, Chang C, Chu H, Yang C, Lei U (2008) Unsteady flow behaviors in an obstacle-type valveless micropump by micro-PIV. Microfluid Nanofluid 4:331–342

    Article  Google Scholar 

  • Shoji S, Esashi M (1994) Microflow devices and systems. J Micromech Microeng 4:157–171

    Article  Google Scholar 

  • Singhal V (2007) Micropump for electronics cooling. US Patent 20070020124

  • Singhal V, Garimella S, Murthy J (2004) Low reynolds number flow through nozzle/diffuser elements in valveless micropumps. Sens Actuators A 113:226–235

    Article  Google Scholar 

  • Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21

    Article  Google Scholar 

  • Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens Actuators A 39:159–167

    Article  Google Scholar 

  • Sun C, Huang K (2006) Numerical characterization of the flow rectification of dynamic microdiffusers. J Micromech Microeng 16:1331–1339

    Article  Google Scholar 

  • Sun C, Yang Z (2007) Effects of the half angle on the flow rectification of a microdiffuser. J Micromech Microeng 17:2031–2038

    Article  Google Scholar 

  • Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96:38–45

    Article  Google Scholar 

  • Tabak A, Yesilyurt S (2007) Numerical simulations and analysis of a micropump actuated by traveling plane waves. Microfluidics BioMEMS and Medical Microsystems V. doi:101117/12702320

  • Tanaka S, Tsukamoto H, Miyazaki K (2008) Development of diffuser/nozzle based valveless micropump. J Fluid Sci Technol 3:999–1007

    Article  Google Scholar 

  • Tesla E (1920) Valvular conduit. US Patent 1,329,559

  • Teymoori M, Abbaspour-Sani E (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A 117:222–229

    Article  Google Scholar 

  • Tsui Y, Lu S (2008) Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses. Sens Actuators A 148:138–148

    Article  Google Scholar 

  • Verma P, Chatterjee D, Nagarajan T (2009) Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling. J Mech Eng Sci 223:953–963

    Article  Google Scholar 

  • Wang B, Chu X, Li E, Li L (2006) Simulations and analysis of a piezoelectric micropump. Ultrasonics 44:e643–e646

    Article  Google Scholar 

  • Wang C, Leu T, Sun J (2007) Unsteady analysis of microvalves with no moving parts. J Mech 23:9–14

    Google Scholar 

  • Wang Y, Kang Y, Xu D, Barnett L, Kalams S, Li D, Li D (2008) On-chip total counting and percentage determination of CD4+Tlymphocytes. Lab-Chip 8:309–315

    Article  Google Scholar 

  • Wang Y, Hsu J, Kuo P, Lee Y (2009) Loss characteristics and flow rectification property of diffuser valves for micropump applications. Int J Heat Mass Transf 52:328–336

    Article  MATH  Google Scholar 

  • Wiederkehr R, Salvadori M, Brugger J, Degasperi F, Cattani M (2008) The gas flow rate increase obtained by an oscillating piezoelectric actuator on a micronozzle. Sens Actuators A 144:154–160

    Article  Google Scholar 

  • Woias P (2005) Micropumps: past, progress and future prospects. Sens Actuators B 105:28–38

    Article  Google Scholar 

  • Wu J, Ben Y, Chang H (2005) Particle detection by electrical impedance spectroscopy with asymmetric-polarization ac electroosmotic trapping. Microfluid Nanofluid 1:161–167

    Article  Google Scholar 

  • Yamaguchi N, Yang M (2004) Development and evaluation of a micro chemical gas sensor with an inner-circulation diffuser pump. Sens Actuators B 103:369–374

    Article  Google Scholar 

  • Yamahata C, Chastellain M, Parashar V, Petri A, Hofmann H, Gijs M (2005a) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst 14:94–102

    Article  Google Scholar 

  • Yamahata C, Lacharme F, Burri Y, Gijs M (2005b) A ball valve micropump in glass fabricated by powder blasting. Sens Actuators B 110:1–7

    Article  Google Scholar 

  • Yamahata C, Lotto C, Al-Assaf E, Gijs M (2005c) A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid 1:197–207

    Article  Google Scholar 

  • Yang K, Chen I, Wang BSC (2004a) Investigation of the flow characteristics within a micronozzle/diffuser. J Micromech Microeng 14:26–31

    Article  Google Scholar 

  • Yang X, Holke A, Jacobson S, Lang J, Schmidt A, Umans S (2004b) An electrostatic, on/off microvalve designed for gas fuel delivery for the mit microengine. J Microelectromech Syst 13:660–668

    Article  Google Scholar 

  • Yang Y, Hsiung S, Lee G (2008) A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluid. doi:101007/s10404-008-0356-7

  • Yao Q, Xu D, Pan L, Teo A, Ho W, Lee V, Shabir M (2007) CFD simulations of flows in valveless micropumps. Eng Appl Comput Fluid Mech 1:181–188

    Google Scholar 

  • Yoshida H (2005) The wide variety of possible applications of micro-thermofluid control. Microfluid Nanofluid 1:289–300

    Article  Google Scholar 

  • Yoshida K, Kikuchi M, Park J, Yokota S (2002) Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments. Sens Actuators A 95:227–233

    Article  Google Scholar 

  • Zhang T, Wang Q (2005) Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices. J Power Sources 140:72–80

    Article  Google Scholar 

  • Zhang T, Wang Q (2006) Performance of miniaturized direct methanol fuel cell (DMFC) devices using micropump for fuel delivery. J Power Sources 158:169–176

    Article  Google Scholar 

  • Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within pcr microfluidic chips: advances and trends. Biotechnol Adv 25:483–514

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nabavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabavi, M. Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review. Microfluid Nanofluid 7, 599–619 (2009). https://doi.org/10.1007/s10404-009-0474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0474-x

Keywords

Navigation