Skip to main content
Log in

A flexible layout design method for passive micromixers

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper discusses a flexible layout design method of passive micromixers based on the topology optimization of fluidic flows. Being different from the trial and error method, this method obtains the detailed layout of a passive micromixer according to the desired mixing performance by solving a topology optimization problem. Therefore, the dependence on the experience of the designer is weaken, when this method is used to design a passive micromixer with acceptable mixing performance. Several design disciplines for the passive micromixers are considered to demonstrate the flexibility of the layout design method for passive micromixers. These design disciplines include the approximation of the real 3D micromixer, the manufacturing feasibility, the spacial periodic design, and effects of the Péclet number and Reynolds number on the designs obtained by this layout design method. The capability of this design method is validated by several comparisons performed between the obtained layouts and the optimized designs in the recently published literatures, where the values of the mixing measurement is improved up to 40.4% for one cycle of the micromixer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • C.S. Andreasen, A.R. Gersborg, O. Sigmund, Topology optimization of microfluidic mixers. Int. J. Numer. Methods Fluids 61, 498–513 (2009)

    Article  MathSciNet  Google Scholar 

  • M.A. Ansari, K.Y. Kim, Shape optimization of a micromixer with staggered herringbone groove. Chem. Eng. Sci. 62, 6687–6695 (2007)

    Article  Google Scholar 

  • M.A. Ansari, K.Y. Kim, Evaluation of surrogate models for optimization of herringbone groove micromixer. J. Mech. Sci. Technol. 22, 387–396 (2008)

    Article  Google Scholar 

  • T. Borrvall, J. Petersson, Topology optimization of fluid in Stokes flow. Int. J. Numer. Methods Fluids 41, 77–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • R.H. Byrd, P. Lu, J. Nocedal, A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Statist. Comput. 16, 1190–1208 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Choudhary, T. Bhakat, R.K. Singh, A. Ghubade, S. Mandal, A. Ghosh, A. Rammohan, A. Sharma, S. Bhattacharya, Bilayer staggered herringbone micro-mixers with symmetric and asymmetric geometries. Microfluid Nanofluid 10, 271–286 (2011)

    Article  Google Scholar 

  • C.K. Chung, T.R. Shih, Effect of geometry on fluid mixing of the rhombic micromixers. Microfluid Nanofluid 4, 419–425 (2008)

    Article  Google Scholar 

  • C.K. Chung, T.R. Shih, T.C. Chen, B.H. Wu, Mixing behavior of the rhombic micromixers over a wide Reynolds number range using Taguchi method and 3D numerical simulations. Biomed. Microdevices 10, 739–748 (2008)

    Article  Google Scholar 

  • C.A. Cortes-Quiroza, M. Zangeneh, A. Goto, On multi-objective optimization of geometry of staggered herringbone micromixer. Microfluid Nanofluid 7, 29–43 (2009)

    Article  Google Scholar 

  • C.A. Cortes-Quiroza, A. Azarbadegana, M. Zangeneha, A. Goto, Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer. Chem. Eng. J. 160, 852–864 (2010)

    Article  Google Scholar 

  • P. Danckwerts, The difinition and measurement of some characteristics of mixtures. Appl. Sci. Res. A3, 279–296 (1952)

    Google Scholar 

  • Y. Deng, Z. Liu, P. Zhang, Y. Wu, J.G. Korvink, in Optimization of No-Moving Part Fluidic Resistance Microvalves with Low Reynolds Number. Proceedings IEEE International Conference on Micro Electro MechanicalSystems (MEMS) (2010), pp. 67–70

  • Y. Deng, Y. Wu, M. Xuan, J.G. Korvink, Z. Liu, in Dynamic Optimization of Valveless Micropump. Proceedings IEEE International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers) (2011), pp. 442–445

  • J. Donea, A. Hureta, Finite Element Methods for Flow Problems (Wiley, West Sussex, 2003)

    Book  Google Scholar 

  • Y. Du, Z. Zhang, C.H. Yim, M. Lin, X. Cao, A simplified design of the staggered herringbone micromixer for practical applications. Biomicrofluidics 4, 024105 (2010)

    Article  Google Scholar 

  • A. Gersborg-Hansen, O. Sigmund, R.B. Haber, Topology optimization of channel flow problems. Struct. Multidisc. Optim. 29, 1–12 (2005)

    Article  MathSciNet  Google Scholar 

  • I. Glasgow, N. Aubry, Enhancement of microfluidic mixing using time pulsing. Lab Chip. 3, 114–120 (2003)

    Article  Google Scholar 

  • M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE constraints (Springer, 2009)

  • S. Hossain, A. Husain, K.Y. Kim, Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls. Chem. Eng. J. 162, 730–737 (2010)

    Article  Google Scholar 

  • P.B. Howell, Jr., D.R. Mott, F.S. Ligler, J.P. Golden, C.R. Kaplan, E.S. Oran, A combinatorial approach to microfluidic mixing. J. Micromechanics Microengineering 18, 115019, 7 pp (2008)

    Google Scholar 

  • M.Z. Huang, R.J. Yang, C.H. Tai, C.H. Tsai, L.M. Fu, Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed. Microdevices 8, 309–315 (2006)

    Article  Google Scholar 

  • A. Jameson, in Optimum Aerodynamic Design Using Control Theory. CFD Review (Wiley, 1995)

  • G.S. Jeong, S. Chung, C.B. Kim, S.H. Lee, Applications of micromixing technology. Analyst 135, 460–473 (2010)

    Article  Google Scholar 

  • T.G. Kang, M.K. Singh, T.H. Kwon, P.D. Anderson, Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer. Microfluid Nanofluid 4, 589–599 (2008)

    Article  Google Scholar 

  • T.G. Kang, M.K. Singh, P.D. Anderson, H.E.H. Meijer, A chaotic serpentine mixer efficient in the creeping flow regime: from design concept to optimization. Microfluid Nanofluid 7, 783–794 (2009)

    Article  Google Scholar 

  • G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, 2005)

  • S.P. Kee, A. Gavriilidis, Design and characterisation of the staggered herringbone mixer. Chem. Eng. J. 142, 109–121 (2008)

    Article  Google Scholar 

  • D.H. Kelley, N.T. Ouellette, Separating stretching from folding in fluid mixing. Nat. Phys. 7, 477–480 (2011)

    Article  Google Scholar 

  • H.Y. Lee, J. Voldman, Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance. Anal. Chem. 79, 1833–1839 (2007)

    Article  Google Scholar 

  • C.Y. Lee, C.L. Chang, Y.N. Wang, L.M. Fu, Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011)

    Article  Google Scholar 

  • D. Li, Encyclopedia of Microfluidics and Nanofluidics (Springer, 2007)

  • C.H. Lin, L.M. Fu, Y.S. Chien, Microfluidic T-form mixer utilizing switching electroosmotic flow. Anal. Chem. 76, 5265–5276 (2004)

    Article  Google Scholar 

  • C.H. Lin, C.H. Tsai, C.W. Pan, L.M. Fu, Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed. Microdevices 9, 43–50 (2007)

    Article  Google Scholar 

  • R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, D.J. Beebe, Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromechanical Syst. 9, 190–197 (2000)

    Article  Google Scholar 

  • Y.Z. Liu, B.J. Kim, H.J. Sung, Two-fluid mixing in a microchannel. Int. J. Heat Fluid Flow 25, 986–995 (2004)

    Article  Google Scholar 

  • Z. Liu, Y. Deng, S. Lin, M. Xuan, Optimization of micro Venturi diode in steady flow at low Reynolds number. Eng. Optim. (2012). doi:10.1080/0305215X.2011.652100

    Google Scholar 

  • N.S. Lynn, D.S. Dandy, Geometrical optimization of helical flow in grooved micromixers. Lab Chip 7, 580–587 (2007)

    Article  Google Scholar 

  • K. Malecha, L.J. Golonka, J. Baldyga, M. Jasińska, P. Sobieszuk, Serpentine microfluidic mixer made in LTCC. Sens. Actuators B 143, 400–413 (2009)

    Article  Google Scholar 

  • D.R. Mott, P.B. Howell, Jr., J.P. Golden, C.R. Kaplan, F.S. Ligler, E.S. Oran, Toolbox for the design of optimized microfluidic components. Lab Chip 6, 540–549 (2006)

    Article  Google Scholar 

  • D.R. Mott, P.B. Howell, Jr., K.S. Obenschain, E.S. Oran, The numerical toolbox: an approach for modeling and optimizing microfluidic components. Mech. Res. Commun. 36, 104–109 (2009)

    Article  MathSciNet  Google Scholar 

  • P.E. Neerincx, R.P.J. Denteneer, S. Peelen, H.E.H. Meijer, Compact mixing using multiple splitting, stretching, and recombining flows. Macromol. Mater. Eng. 296, 349–361 (2011)

    Article  Google Scholar 

  • W.Y. Ng, S. Goh, Y.C. Lam, C. Yang, I. Rodriguez, DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip 9, 802–809 (2009)

    Article  Google Scholar 

  • N.T. Nguyen, Micromixer: Fundamentals, Design and Fabrication (William Andrew, 2008)

  • N.T. Nguyen, Z. Wu, Micromixers—a review. J. Micromechanics Microengineering 15, 1–16 (2005)

    Article  Google Scholar 

  • J. Nocedal, S.J. Wright, Numerical Optimization (Springer, 1998)

  • F. Okkels, H. Bruus, in Design of Micro-Fluidic Bio-Reactors Using Topology Optimization. ECCOMAS CFD (2006)

  • L.H. Olesen, F. Okkels, H. Bruus, A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int. J. Numer. Methods Eng. 65, 975–1001 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • J.M. Park, T.H. Kwon, Numerical characterization of three-dimensional serpentine micromixers. AIChE J. 54, 1999–2008 (2008)

    Article  Google Scholar 

  • J.M. Park, D.S. Kim, T.G. Kang, T.H. Kwon, Improved serpentine laminating micromixer with enhanced local advection. Microfluid Nanofluid 4, 513–523 (2008)

    Article  Google Scholar 

  • E. Schall, Y.L. Guer, S. Gibout, in An Anisotropic Unstructured Meshes Mapping Method (AUM3) to Optimize Mixing in Laminar Periodic Flows. Proceedings of PSFVIP-4, Chamonix, France, 3–5 June 2003

  • O. Sigmund, Morphology-based black and white filters for topology optimization. Struct. Multidisc. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  • M.K. Singh, T.G. Kang, H.E.H. Meijer, P.D. Anderson, The mapping method as a toolbox to analyze, design, and optimize micromixers. Microfluid Nanofluid 5, 313–325 (2008)

    Article  Google Scholar 

  • M.K. Singh, T.G. Kang, P.D. Anderson, H.E.H. Meijer, A.N. Hrymak, Analysis and optimization of low-pressure drop static mixers. AIChE J. 55, 2208–2216 (2009)

    Article  Google Scholar 

  • H. Song, X.Z. Yin, D.J. Bennett, Optimization analysis of the staggered herringbone micromixer based on the slip-driven method. Chem. Eng. Res. Des. 86, 883–891 (2008)

    Article  Google Scholar 

  • H. Song, Z. Cai, H. Noh, D. Bennett, Lab Chip 10, 734–740 (2010)

    Article  Google Scholar 

  • A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides, Chaotic mixer for microchannels. Science 295, 647 (2002)

    Article  Google Scholar 

  • A.P. Sudarsan, V.M. Ugaz, Multivortex micromixing. PNAS 103, 7228–7233 (2006)

    Article  Google Scholar 

  • M.S. Williams, K.J. Longmuirb, P. Yager, A practical guide to the staggered herringbone mixer. Lab Chip 8, 1121–1129 (2008)

    Article  Google Scholar 

  • C.H. Wu, R.J. Yang, Improving the mixing performance of side channel type micromixers using an optimal voltage control model. Biomed. Microdevices 8, 119–131 (2006)

    Article  Google Scholar 

  • Z. Xu, C. Li, D. Vadilloc, X. Ruanb, X. Fu, Numerical simulation on fluid mixing by effects of geometry in staggered oriented ridges micromixers. Sens. Actuators B, Chem. 153, 284–292 (2011)

    Article  Google Scholar 

  • C. Zhu, R.H. Byrd, J. Nocedal, L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.50975272, No. 11034007), the 863 Program (No.2012AA040503) and the hundred talent project in Chinese Academy of Sciences. The authors are also grateful to the reviewers’ kind attention and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Liu or Yihui Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Liu, Z., Zhang, P. et al. A flexible layout design method for passive micromixers. Biomed Microdevices 14, 929–945 (2012). https://doi.org/10.1007/s10544-012-9672-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9672-5

Keywords

Navigation