Skip to main content
Log in

Topology design for maximization of fundamental frequency of couple-stress continuum

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper, the topology optimization formulation of couple-stress continuum is investigated for maximizing the fundamental frequency. A modified bound formulation is used to prevent the order switching and the eigenvalue repeating during the optimization procedure. Also, a modified stiffness interpolation with respect to the element density is employed to avoid the localized mode. Numerical examples are carried out to verify the effectiveness of the present formulation. The results show that the fundamental frequencies increase with the increasing bending modulus but decrease with the increasing inertia of micro-rotation for couple-stress continuum. In addition, the bending modulus contributes dominantly in enlarging the fundamental frequencies. Moreover, the results show that the characteristic length is a factor to determine whether the couple-stress effect is important. The optimal topology and fundamental frequency are both quite different from those of classical continuum when the characteristic length is large and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Addessi D, Sacco E, Paolone A (2010) Cosserat model for periodic masonry deduced by nonlinear homogenization. Eur J Mech A Solids 29:724–737

    Article  Google Scholar 

  • Anderson WB, Lakes RS (1994) Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J Mater Sci 29:6413–6419. doi:10.1007/BF00353997

    Article  Google Scholar 

  • Bai Z, Demmel J, Dongarra J, Ruhe A, Hvd V (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe MP, Olhoff N, Taylor JE (1983) A variational formulation for multicriteria structural optimization. J Struct Mech 11:523–544. doi:10.1080/03601218308907456

    Article  Google Scholar 

  • Bigoni D, Drugan WJ (2007) Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials. J Appl Mech Trans ASME 74:741–753

    Article  MathSciNet  Google Scholar 

  • Bouyge F, Jasiuk I, Boccara S, Ostoja-Starzewski M (2002) A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. Eur J Mech A Solids 21:465–481

    Article  MATH  Google Scholar 

  • Bruggi M, Taliercio A (2012) Maximization of the fundamental eigenfrequency of micropolar solids through topology optimization. Struct Multidiscip Optim 46:549–560. doi:10.1007/s00158-012-0779-3

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Venini P (2008) Eigenvalue-based optimization of incompressible media using mixed finite elements with application to isolation devices. Comput Methods Appl Mech Eng 197:1262–1279. doi:10.1016/j.cma.2007.11.013

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Cheng G, Wang B (2007) Constraint continuity analysis approach to structural topology optimization with frequency objective/constraints. In: Kwak BM (ed) Proceeding of the 7th world congress of structural and multidisciplinary optimization. Seoul, Korea, p 2072

  • Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization 1: linear systems. Mechanical Engineering Series. Springer, New York

    Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110. doi:10.1007/s00158-007-0101-y

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1999) Microcontinuum field theories, vol 1. Springer, New York

    Book  MATH  Google Scholar 

  • Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41:1825–1857

    Article  MathSciNet  MATH  Google Scholar 

  • Forest S, Trinh DK (2011) Generalized continua and non-homogeneous boundary conditions in homogenisation methods. ZAMM J Appl Math Mech / Zeitschrift für Angewandte Mathematik und Mechanik 91:90–109. doi:10.1002/zamm.201000109

    Article  MathSciNet  MATH  Google Scholar 

  • Han SM, Benaroya H, Wei T (1999) Dynamics of transversely vibrating beams using four engineering theories. J Sound Vib 225:935–988. doi:10.1006/jsvi.1999.2257

    Article  MATH  Google Scholar 

  • HSL (2011) A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk

  • Kim TS, Kim YY (2000) Mac-based mode-tracking in structural topology optimization. Comput Struct 74:375–383

    Article  Google Scholar 

  • Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72:535–563. doi:10.1016/S0045-7949(98)00326-5

    Article  MATH  Google Scholar 

  • Lakes R (2015) Cosserat Elasticity; micropolar elasticity. http://silver.neep.wisc.edu/~lakes/Coss.html. Accessed 16 May 2015

  • Lakes R, Drugan WJ (2015) Bending of a Cosserat elastic bar of square cross section - theory and experiment. J Appl Mech 82:091002-1–091002-8. doi:10.1115/1.4030626

    Article  Google Scholar 

  • Liu S, Su W (2009) Effective couple-stress continuum model of cellular solids and size effects analysis. Int J Solids Struct 46:2787–2799

    Article  MATH  Google Scholar 

  • Liu S, Su W (2010) Topology optimization of couple-stress material structures. Struct Multidiscip Optim 40:319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Lund E (1994) Finite element based design sensitivity analysis and optimization. Aalborg University

  • Ma Z-D, Kikuchi N, Cheng H-C, Hagiwara I (1995) Topological optimization technique for free vibration problems. J Appl Mech 62:200–207

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1963) Influence of couple-stresses on stress concentrations. Exp Mech 3:1–7

    Article  Google Scholar 

  • Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39:115–132

    Article  Google Scholar 

  • Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1:11–17. doi:10.1007/bf01743805

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11. doi:10.1007/s001580050130

    Article  Google Scholar 

  • Rovati M, Veber D (2007) Optimal topologies for micropolar solids. Struct Multidiscip Optim 33:47–59

    Article  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252. doi:10.1007/BF01742754

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multidiscip Optim 8:207–227. doi:10.1007/bf01742705

    Article  Google Scholar 

  • Su W, Liu S (2010) Size-dependent optimal microstructure design based on couple-stress theory. Struct Multidiscip Optim 42:243–254

    Article  Google Scholar 

  • Su W, Liu S (2014) Vibration analysis of periodic cellular solids based on an effective couple-stress continuum model. Int J Solids Struct 51:2676–2686. doi:10.1016/j.ijsolstr.2014.03.043

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor JE, Bendsøe MP (1984) An interpretation for min-max structural design problems including a method for relaxing constraints. Int J Solids Struct 20:301–314

    Article  MathSciNet  MATH  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622. doi:10.1002/nme.484

    Article  MATH  Google Scholar 

  • Tekoglu C, Onck PR (2008) Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J Mech Phys Solids 56:3541–3564

    Article  MATH  Google Scholar 

  • Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47:673–686. doi:10.1007/s00158-012-0840-2

    Article  MathSciNet  MATH  Google Scholar 

  • Veber D, Taliercio A (2012) Topology optimization of three-dimensional non-centrosymmetric micropolar bodies. Struct Multidiscip Optim 45:575–587. doi:10.1007/s00158-011-0707-y

    Article  MathSciNet  MATH  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier/Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Professor Ole Sigmund, Jiahao Lin, Jianbin Du and Bin Niu for the discussions on the optimization of repeated eigenvalues.

This research is supported by the National Natural Science Foundation of China(11002031, 11332004), the National Basic Research Program (973 Program) of China (2011CB610304), and the Program for Liaoning Excellent Talents in University (LJQ2012040). The authors acknowledge these financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzheng Su.

Appendix: Definitions of engineering constants of isotropic micropolar material

Appendix: Definitions of engineering constants of isotropic micropolar material

In the case of isotropic micropolar material, which neglects the thermal effects, the constitutive equations take the form:

$$ \begin{array}{l}{\sigma}_{kl}=\lambda {\varepsilon}_{mm}{\delta}_{kl}+\left(\mu +\kappa \right){\varepsilon}_{kl}+\mu {\varepsilon}_{lk}\hfill \\ {}{m}_{kl}=\alpha {\kappa}_{mm}{\delta}_{kl}+\beta {\kappa}_{kl}+\gamma {\kappa}_{kl}\hfill \end{array} $$
(23)

where λ, μ, κ, α, β and γ are the material moduli.

The Young’s modulus E, shear modulus G and coupling parameter N are defined as follows (Eringen 1999):

$$ E\equiv \frac{\left(2\mu +\kappa \right)\left(3\lambda +2\mu +\kappa \right)}{2\lambda +2\mu +\kappa } $$
(24)
$$ G\equiv \mu +\frac{\kappa }{2} $$
(25)
$$ N\equiv {\left[\frac{\kappa }{2\left(\mu +\kappa \right)}\right]}^{\frac{1}{2}} $$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, W., Liu, S. Topology design for maximization of fundamental frequency of couple-stress continuum. Struct Multidisc Optim 53, 395–408 (2016). https://doi.org/10.1007/s00158-015-1316-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1316-y

Keywords

Navigation