Skip to main content
Log in

Non-parametric stochastic subset optimization for design problems with reliability constraints

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The Non-Parametric Stochastic Subset Optimization (NP-SSO) is a recently developed algorithm appropriate for optimization problems that use reliability criteria as objective function and involve computationally expensive numerical models for the engineering system under consideration. This paper discusses its extension to reliability-based design optimization (RBDO) applications involving reliability criteria as a design constraint. The foundation of NP-SSO is the formulation of an augmented problem where the design variables are artificially considered as uncertain. In this context, the reliability of the engineering system is proportional to an auxiliary probability density function related to the design variables. NP-SSO is based on simulation of samples from this density and approximation of this reliability through kernel density estimation (KDE) using these samples. The RBDO problem is then solved using this approximation for evaluating the reliability constraints over the entire design domain and identifying the feasible region satisfying them. To improve computational efficiency, an iterative approach is proposed; at the end of each iteration, a new reduced search space is identified with reliability satisfying relaxed constraints, until the algorithm converges to the feasible design domain satisfying the desired constraints. A second refinement stage after initial convergence is also proposed to further improve the accuracy of the identified feasible region. A non-parametric characterization of the search space using a framework based on multivariate boundary KDE and support vector machine is established. To further improve the efficiency of the stochastic sampling stage, an adaptive selection of the number of samples required for the KDE approximation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal H, Renaud JE (2006) New decoupled framework for reliability-based design optimization. AIAA J 44(7):1524–1531

    Article  Google Scholar 

  • Aoues Y, Chateauneuf A (2008) Reliability-based optimization of structural systems by adaptive target safety—application to RC frames. Struct Saf 30(2):144–161

    Article  Google Scholar 

  • Au SK (2005) Reliability-based design sensitivity by efficient simulation. Comput Struct 83:1048–1061

    Article  Google Scholar 

  • Au SK, Beck JL (1999) A new adaptive importance sampling scheme. Struct Saf 21(2):135–158

    Article  Google Scholar 

  • Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277

    Article  Google Scholar 

  • Basudhar A, Missoum S (2008) Adaptive explicit decision functions for probabilistic design and optimization using support vector machines. Comput Struct 86(19–20):1904–1917

    Article  Google Scholar 

  • Beck AT, Santana Gomes WJ (2012) A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty. Probab Eng Mech 12:18–29

    Article  Google Scholar 

  • Beck JL, Taflanidis A (2013) Prior and posterior robust stochastic predictions for dynamical systems using probability logic. J Uncertain Quantif 3(4):271–288

    Article  MathSciNet  Google Scholar 

  • Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160:635–676

    Article  Google Scholar 

  • Ching J, Hsieh Y-H (2007a) Approximate reliability-based optimization using a three-step approach based on subset simulation. J Eng Mech 133(4):481–493

    Article  Google Scholar 

  • Ching J, Hsieh Y-H (2007b) Local estimation of failure probability function and its confidence interval with maximum entropy principle. Probab Eng Mech 22:39–49

    Article  Google Scholar 

  • Chiralaksanakul A, Mahadevan S (2005) First-order approximation methods in reliability-based design optimization. J Mech Des 127(5):851–857

    Article  Google Scholar 

  • Der Kiureghian A (1996) Structural reliability methods for seismic safety assessment: a review. Eng Struct 18(6):412–424

    Article  Google Scholar 

  • Der Kiureghian A (2000) The geometry of random vibrations and solutions by FORM and SORM. Probab Eng Mech 15(1):81–90

    Article  Google Scholar 

  • Doltsinis I (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193(23–26):2221–2237

    Article  MATH  Google Scholar 

  • Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des 126(2):225–233

    Article  Google Scholar 

  • Dubourg V, Sudret B, Bourinet J-M (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidiscip Optim 44(5):673–690

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc Ser C Appl Stat 28(1):100–108

    MATH  Google Scholar 

  • Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jia G, Taflanidis AA (2014) Sample-based evaluation of global probabilistic sensitivity measures. Comput Struct 144:103–118

    Article  Google Scholar 

  • Jia G, Taflanidis AA (2013) Non-parametric stochastic subset optimization for optimal-reliability design problems. Comput Struct 126:86–99

    Article  Google Scholar 

  • Jia G, Gidaris I, Taflanidis AA, Mavroeidis GP (2014) Reliability-based assessment/design of floor isolation systems. Eng Struct 78:41–56

    Article  Google Scholar 

  • Jia G, Taflanidis A, Beck JL (2015) A new adaptive rejection sampling method using kernel density approximations and its application to Subset Simulation. ASCE-ASME J. Risk Uncertainty Eng Syst Part A: Civ Eng. doi:10.1061/AJRUA6.0000841

  • Katafygiotis LS, Zuev KM (2008) Geometric insight into the challenges of solving high-dimensional reliability problems. Probab Eng Mech 23(2):208–218

    Article  Google Scholar 

  • Marti K (2005) Stochastic optimization methods. Springer, Berlin

    MATH  Google Scholar 

  • Missoum S, Ramu P, Haftka RT (2007) A convex hull approach for the reliability-based design optimization of nonlinear transient dynamic problems. Comput Methods Appl Mech Eng 196(29–30):2895–2906

    Article  MATH  Google Scholar 

  • Neilsen J (1999) Multivariate boundary kernels from local linear estimation. Scand Actuar J 1999(1):93–95

    Article  Google Scholar 

  • Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 191(32):3491–3507

    Article  MATH  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Royset JO, Polak E (2004) Reliability-based optimal design using sample average approximations. Probab Eng Mech 19:331–343

    Article  Google Scholar 

  • Royset JO, Der Kiureghian A, Polak E (2001) Reliability-based optimal structural design by the decoupling approach. Reliab Eng Syst Saf 73(3):213–221

    Article  Google Scholar 

  • Royset JO, Der Kiureghian A, Polak E (2006) Optimal design with probabilistic objective and constraints. J Eng Mech 132(1):107–118

    Article  Google Scholar 

  • Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge

    Google Scholar 

  • Schuëller GI, Jensen HA (2008) Computational methods in optimization considering uncertainties—an overview. Comput Methods Appl Mech Eng 198(1):2–13

    Article  MATH  Google Scholar 

  • Taflanidis AA, Beck JL (2008) Stochastic subset optimization for optimal reliability problems. Probab Eng Mech 23(2–3):324–338

    Article  Google Scholar 

  • Taflanidis AA, Scruggs JT (2010) Performance measures and optimal design of linear structural systems under stochastic stationary excitation. Struct Saf 32(5):305–315

    Article  Google Scholar 

  • Tibshirani R, Walther G, Hastle T (2000) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B 63(2):411–423

    Article  Google Scholar 

  • Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidiscip Optim 42(5):645–663

    Article  MathSciNet  MATH  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimensional reduction method for multidimensional integration in stochastic mechanics. Int J Numer Methods Eng 61(12):1992–2019

    Article  MATH  Google Scholar 

  • Youn BD, Xi Z, Wells LJ, Lamb DA (2006) Stochastic response surface using the enhanced dimension-reduction (eDR) method for reliability-based robust design optimization. Paper presented at the III European Conference on Computational Mechanics, Lisbon. Portugal, June 5-8

  • Youn BD, Xi Z, Wang P (2008) Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis. Struct Multidiscip Optim 37(1):13–28

    Article  MathSciNet  MATH  Google Scholar 

  • Zou T, Mahadevan S (2006) A direct decoupling approach for efficient reliability-based design optimization. Struct Multidiscip Optim 31(3):190–200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros A. Taflanidis.

Appendix A: Details on multivariate boundary kernels

Appendix A: Details on multivariate boundary kernels

If n s samples {x F } are available for x from p(x| F I ) with x j F,i denoting the j th sample of the i th design variable, the KDE-MBK estimator is given by utilizing a corrected kernel \( {\underline{K}}_m \)

$$ \begin{array}{l}\tilde{p}\left(\mathbf{x}\Big|{F}_I\right)=\frac{1}{n_s}{\displaystyle \sum_{j=1}^{n_s}}{\underline{K}}_m\left(\mathbf{x}-{\mathbf{x}}_F^j\right)\\ {}{\underline{K}}_m\left(\mathbf{x}-{\mathbf{x}}_F^j\right)=\frac{K_m\left(\mathbf{x}-{\mathbf{x}}_F^j\right)-{K}_m\left(\mathbf{x}-{\mathbf{x}}_F^j\right){\left[\mathbf{x}-{\mathbf{x}}_F^j\right]}^T{D}^{-1}\left(\mathbf{x}\right){c}_1\left(\mathbf{x}\right)}{c_0\left(\mathbf{x}\right)-{c}_1^T\left(\mathbf{x}\right){D}^{-1}\left(\mathbf{x}\right){c}_1\left(\mathbf{x}\right)},\end{array} $$
(21)

where the uncorrected multivariate kernel K m is the product kernel

$$ {K}_m\left(\mathbf{x}-{\mathbf{x}}_F^j\right)={\displaystyle \prod_{i=1}^{n_x}}\frac{1}{w_i}K\left(\frac{x_i-{x}_{F,i}^j}{w_i}\right), $$
(22)

with K(.) the chosen univariate kernel, w i the bandwidth parameter for the i th design variable defining the spread of the kernel, and constant c 0(x), vector \( {c}_1\left(\mathbf{x}\right)={\left[\begin{array}{ccc}\hfill {c}_{11}\left(\mathbf{x}\right)\hfill & \hfill \cdots \hfill & \hfill {c}_{1{n}_x}\left(\mathbf{x}\right)\hfill \end{array}\right]}^T \), and matrix D(x) with elements d kl (x), given, respectively, by:

$$ \begin{array}{l}{c}_0\left(\mathbf{x}\right)={\displaystyle {\int}_{\varDelta_I}{K}_m\left(\mathbf{x}-\mathbf{y}\right)}d\mathbf{y},\ {c}_{1i}\left(\mathbf{x}\right)={\displaystyle {\int}_{\varDelta_I}{K}_m\left(\mathbf{x}-\mathbf{y}\right)}\left({x}_i-{y}_i\right)d\mathbf{y}\\ {}{d}_{kl}\left(\mathbf{x}\right)={\displaystyle {\int}_{\varDelta_I}{K}_m\left(\mathbf{x}-\mathbf{y}\right)}\left({x}_k-{y}_k\right)\left({x}_l-{y}_l\right)d\mathbf{y}.\end{array} $$
(23)

Here Δ Ι is the part of the support region S(x) for the kernel K m (x) that also belongs to I. If the whole part of Δ Ι is inside I then x is an interior point and no correction is necessary \( {\underline{K}}_m={K}_m \); otherwise, it belongs to the boundary region and estimation of \( {\underline{K}}_m \) requires the variables (correction coefficients) in (23), which for complex boundaries can be performed using Monte Carlo (MC) integration (discussed next). For the univariate kernel, the Epanechnikov Kernel is chosen in this study

$$ \begin{array}{l}K(t)=\frac{3}{4}\left(1-{t}^2\right)\kern1em \mathrm{if}\kern0.75em -1\le t\le 1\\ {}=0\kern0.75em \mathrm{else}\end{array} $$
(24)

with bandwidth characteristics the ones derived in (Jia and Taflanidis 2014)

$$ {w}_i={\left[25{\left(\frac{3}{5}\right)}^{n_x}{\left(2\sqrt{\uppi}\right)}^{n_x}\right]}^{1/\left({n}_x+4\right)}{\left[\frac{4}{\left({n}_x+2\right){n}_s}\right]}^{1/\left({n}_x+4\right)}{\sigma}_i $$
(25)

where σ i corresponds to the standard deviation for the samples {x F,i }.

The correction coefficients in (23) can be estimated in the following way using MC integration with a uniform proposal density in Δ Ι : first, generate n coeff u,x uniform samples {x j u ; j = 1, …, n coeff u,x } in the support region S(x) for x, which for the Epanechnikov Kernel is a hyper-rectangle centred at x and with width 2w i in the i th dimension and a volume of \( {V}_c={2}^{n_x}{\displaystyle {\prod}_{i=1}^{n_x}{w}_i} \). If the domain/boundary is characterized by a SVM, then use this SVM to classify the n coeff u,x samples and identify the n coeff in,x uniform samples {x j o ; j = 1, …, n coeff in,x } that are inside Δ Ι and estimate its volume, i.e., V in  = n coeff in,x /n coeff u,x  ⋅ V c . Based on this information (i.e., uniform samples within Δ I ), calculate the required coefficients as:

$$ \begin{array}{l}{c}_0\left(\mathbf{x}\right)\approx {V}_{in}/{n}_{in,\mathbf{x}}^{coeff}{\displaystyle {\sum}_{j=1}^{n_{in,\mathbf{x}}^{coeff}}{K}_m\left(\mathbf{x}-{\mathbf{x}}_o^j\right)}\\ {}{c}_{1i}\left(\mathbf{x}\right)\approx {V}_{in}/{n}_{in,\mathbf{x}}^{coeff}{\displaystyle {\sum}_{j=1}^{n_{in,\mathbf{x}}^{coeff}}{K}_m\left(\mathbf{x}-{\mathbf{x}}_o^j\right)}\left({x}_i-{x}_{o,i}^j\right)\\ {}{d}_{kl}\left(\mathbf{x}\right)\approx {V}_{in}/{n}_{in,\mathbf{x}}^{coeff}{\displaystyle {\sum}_{j=1}^{n_{in,\mathbf{x}}^{coeff}}{K}_m\left(\mathbf{x}-{\mathbf{x}}_o^j\right)}\left({x}_k-{x}_{o,k}^j\right)\left({x}_l-{x}_{o,l}^j\right)\end{array} $$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, G., Taflanidis, A.A. & Beck, J.L. Non-parametric stochastic subset optimization for design problems with reliability constraints. Struct Multidisc Optim 52, 1185–1204 (2015). https://doi.org/10.1007/s00158-015-1300-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1300-6

Keywords

Navigation