Skip to main content
Log in

Massive analysis of cDNA ends (MACE) reveals a co-segregating candidate gene for LpPg1 stem rust resistance in perennial ryegrass (Lolium perenne)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Molecular markers including a potential resistance gene co-segregating with the LpPg1 stem rust resistance locus in perennial ryegrass were identified by massive analysis of cDNA ends (MACE) transcriptome profiling.

Abstract

Stem rust caused by Puccinia graminis subsp. graminicola is a severe fungal disease in the forage crop perennial ryegrass and other grasses. The previously identified LpPg1 locus confers efficient resistance against the pathogen. The aim of this study was to identify candidate genes involved in rust resistance and to use them as a resource for the development of molecular markers for LpPg1. To identify such candidates, bulked segregant analysis was combined with NGS-based massive analysis of cDNA ends (MACE) transcriptome profiling. Total RNA was isolated from bulks of infected and non-infected leaf segments from susceptible and resistant genotypes of a full-sibling mapping population and their respective parental lines and MACE was performed. Bioinformatic analysis detected 330 resistance-specific SNPs in 178 transcripts and 341 transcripts that were exclusively expressed in the resistant bulk. The sequences of many of these transcripts were homologous to genes in distinct regions of chromosomes one and four of the model grass Brachypodium distachyon. Of these, 30 were genetically mapped to a 50.8 cM spanning region surrounding the LpPg1 locus. One candidate NBS-LRR gene co-segregated with the resistance locus. Quantitative analysis of gene expression suggests that LpPg1 mediates an efficient resistance mechanism characterized by early recognition of the pathogen, fast defense signaling and rapid induction of antifungal proteins. We demonstrate here that MACE is a cost-efficient, fast and reliable tool that detects polymorphisms for genetic mapping of candidate resistance genes and simultaneously reveals deep insight into the molecular and genetic base of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abberton MT, Marshall AH, Humphreys MW, Macduff JH, Collins RP, Marley CL (2008) Genetic improvement of forage species to reduce the environmental impact of temperate livestock grazing systems. Adv Agron 98:311–355

    Article  Google Scholar 

  • Beckmann K (2010) Entwicklung eines In-vitro-Resistenztests für den Erreger des Schwarzrostes (Puccinia graminis ssp. graminicola) an Deutschem Weidelgras (Lolium perenne L.) und molekulare Charakterisierung eines dominanten Resistenzgens. Julius Kühn-lnstitut, Federal Research Centre for Cultivated Plants

  • Beckmann K, Eickmeyer F, Lellbach H, Schubiger FX, Hartmann S, Wehling P (2010) Development of molecular markers for stem rust resistance in perennial ryegrass (Lolium perenne L.) and their utilisation in breeding programms. In: 60.Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 2009. Lehr und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein, Irdning, pp 101–104

    Google Scholar 

  • Bolton MD, Kolmer JA, Xu WW, Garvin DF (2008) Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Mol Plant Microbe Interact 21:1515–1527. doi:10.1094/MPMI-21-12-1515

    Article  CAS  PubMed  Google Scholar 

  • Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95:15849–15854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozkurt TO, Mcgrann GRD, Maccormack R, Boyd LA, Akkaya MS (2010) Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with Puccinia striiformis f. sp. tritici. Mol Plant Pathol 11:625–640. doi:10.1111/j.1364-3703.2010.00633.x

    CAS  PubMed  Google Scholar 

  • Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T (2015) A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J. doi:10.1111/tpj.13037

    PubMed  Google Scholar 

  • Caruso C, Caporale C, Chilosi G, Vacca F, Bertini L, Magro P, Poerio E, Buonocore V (1996) Structural and antifungal properties of a pathogenesis-related protein from wheat kernel. J Protein Chem 15:35–44. doi:10.1007/BF01886809

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716. doi:10.1104/pp.001057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibucos MC, Collmer CW, Torto-Alalibo T, Gwinn-Giglio M, Lindeberg M, Li D, Tyler BM (2009) Programmed cell death in host-symbiont associations, viewed through the Gene Ontology. BMC Microbiol 9(Suppl 1):S5. doi:10.1186/1471-2180-9-S1-S5

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi JJ, Alkharouf NW, Schneider KT, Matthews BF, Frederick RD (2008) Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Funct Integr Genom 8:341–359. doi:10.1007/s10142-008-0080-0

    Article  CAS  Google Scholar 

  • Coram TE, Wang M, Chen X (2008) Transcriptome analysis of the wheat—Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol 9:157–169. doi:10.1111/J.1364-3703.2007.00453.X

    Article  CAS  PubMed  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot 56:1525–1533. doi:10.1093/jxb/eri145

    Article  CAS  PubMed  Google Scholar 

  • Deschamps S, Campbell MA (2009) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570. doi:10.1007/s11032-009-9357-9

    Article  Google Scholar 

  • Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117(2):203–219. doi:10.1007/s00122-008-0766-7

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258. doi:10.1073/pnas.2435133100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondevilla S, Krezdorn N, Rotter B, Kahl G, Winter P (2015) In planta identification of putative pathogenicity factors from the chickpea pathogen Ascochyta rabiei by De novo transcriptome sequencing using RNA-Seq and massive analysis of cDNA ends. Front Microbiol 6:1–15. doi:10.3389/fmicb.2015.01329

    Article  Google Scholar 

  • Fu D, Tisserat NA, Xiao Y, Settle D, Muthukrishnan S, Liang GH (2005) Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass. Plant Sci 168:671–680. doi:10.1016/j.plantsci.2004.09.032

    Article  CAS  Google Scholar 

  • Gao Q-M, Venugopal S, Navarre D, Kachroo A (2011a) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155:464–476. doi:10.1104/pp.110.166876

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Chung E-H, Eitas TK, Dangl JL (2011b) Plant intracellular innate immune receptor resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane. Proc Natl Acad Sci USA 108:7619–7624. doi:10.1073/pnas.1104410108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor–like Kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011. doi:10.1016/S1097-2765(00)80265-8

    Article  PubMed  Google Scholar 

  • Guo B, Fedorova ND, Chen X, Wan C-H, Wang W, Nierman WC, Bhatnagar D, Yu J (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins (Basel) 3:737–753. doi:10.3390/toxins3070737

    Article  CAS  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471. doi:10.1016/j.pbi.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  • Hahn K, Strittmatter G (1994) Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem 226:619–626. doi:10.1111/j.1432-1033.1994.tb20088.x

    Article  CAS  PubMed  Google Scholar 

  • Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:270–279. doi:10.1007/s00122-006-0292-4

    Article  CAS  PubMed  Google Scholar 

  • Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL (2007) Gene expression patterns in near isogenic lines for wheat rust resistance gene lr34/yr18. Phytopathology 97:1083–1093. doi:10.1094/PHYTO-97-9-1083

    Article  CAS  PubMed  Google Scholar 

  • Jing F, Jiao-Jiao X, Rin-Ming L, Yue-Qiu H, Shi-Chang X (2013) Genetic analysis and location of gene for resistance to stripe rust in wheat international differential host Strubes Dickkopf. J Genet 92:267–272

    Article  CAS  PubMed  Google Scholar 

  • Jo Y-K, Barker R, Pfender W, Warnke S, Sim S-C, Jung G (2008) Comparative analysis of multiple disease resistance in ryegrass and cereal crops. Theor Appl Genet 117:531–543. doi:10.1007/s00122-008-0797-0

    Article  CAS  PubMed  Google Scholar 

  • Kahl G, Molina C, Rotter B, Jüngling R, Frank A, Krezdorn N, Hoffmeier K, Winter P (2012) Reduced representation sequencing of plant stress transcriptomes. J Plant Biochem Biotechnol 21:119–127. doi:10.1007/s13562-012-0129-y

    Article  CAS  Google Scholar 

  • Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346. doi:10.1104/pp.106.095299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Jung MS, Lee SM, Kim KE, Byun H, Choi MS, Park HC, Cho MJ, Chung WS (2009) An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem Biophys Res Commun 381:424–428. doi:10.1016/j.bbrc.2009.02.050

    Article  CAS  PubMed  Google Scholar 

  • Lellbach H (1994) Blattstück—Test zur Beurteilung der Resistenz gegen Kronenrost (Puccinia coronata) bei Lolium sp. In: 36. Fachtagung des DLG-Ausschusses Gräser, Klee und Zwischenfrüchte am 7. und 8. Dezember 1994, Fulda. pp 89–97

  • Lin KC, Bushnell WR, Smith AG, Szabo LJ (1998) Temporal accumulation patterns of defence response gene transcripts in relation to resistant reactions in oat inoculated with Puccinia graminis. Physiol Mol Plant Pathol 52:95–114

    Article  CAS  Google Scholar 

  • Liu JJ, Sturrock R, Ekramoddoullah AK (2010) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436. doi:10.1007/s00299-010-0826-8

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178. doi:10.1105/tpc.007468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488. doi:10.1007/s00299-006-0265-8

    Article  CAS  PubMed  Google Scholar 

  • Mamo BE, Smith KP, Brueggeman RS, Steffenson BJ (2015) Genetic characterization of resistance to wheat stem rust race TTKSK in landrace and wild barley accessions identifies the rpg4/Rpg5 locus. Phytopathology 105:99–109. doi:10.1094/PHYTO-12-13-0340-R

    Article  CAS  PubMed  Google Scholar 

  • Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Suzuki A, Yano K, Ogihara Y (2010) Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina. DNA Res 17:211–222. doi:10.1093/dnares/dsq009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione s-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158. doi:10.1146/annurev.arplant.47.1.127

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874. doi:10.1105/tpc.10.11.1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959. doi:10.1104/pp.105.068544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against botrytis cinerea in Arabidopsis. PLoS One 7:1–11. doi:10.1371/journal.pone.0035995

    Article  Google Scholar 

  • Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldán-Ruiz I (2005) Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity (Edinb) 95:348–357. doi:10.1038/sj.hdy.6800729

    Article  CAS  Google Scholar 

  • Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC, Ellisdon AM, Rotter B, Azam T, Mangan NE, Rossello FJ, Whisstock JC, Bufler P, Garlanda C, Mantovani A, Dinarello CA, Nold MF (2015) IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 16:354–365. doi:10.1038/ni.3103

    Article  CAS  PubMed  Google Scholar 

  • Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN (2007) Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage. Funct Integr Genom 7:291–301. doi:10.1007/s10142-007-0045-8

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeifer M, Martis M, Asp T, Mayer KFX, Lubberstedt T, Byrne S, Frei U, Studer B (2013) The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. Plant Physiol 161:571–582. doi:10.1104/pp.112.207282

    Article  CAS  PubMed  Google Scholar 

  • Pfender W (2009) A damage function for stem rust of perennial ryegrass seed crops. Phytopathology 99:498–505. doi:10.1094/PHYTO-99-5-0498

    Article  CAS  PubMed  Google Scholar 

  • Pfender WF, Slabaugh ME (2013) Pathotype-specific QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 126:1213–1225. doi:10.1007/s00122-013-2048-2

    Article  CAS  PubMed  Google Scholar 

  • Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480. doi:10.1007/s00122-011-1546-3

    Article  CAS  PubMed  Google Scholar 

  • Pré M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357. doi:10.1104/pp.108.117523

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324. doi:10.1007/s00122-013-2220-8

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust. Plant Physiol 144:347–366. doi:10.1104/pp.106.094987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubiger FX, Baert J, Bayle B, Bourdon P, Cagas B, Cernoch V, Czembor E, Eickmeyer F, Feuerstein U, Hartmann S, Jakesova H, Johnston D, Krautzer B, Leenheer H, Lellbach H, Persson C, Pietraszek W, Posselt UK, Romani M, Russi L, Schulze S, Tardin MC, VanHee F, van Kruijssen L, Wilkins P, Willner E, Wolters L, Boller B (2010) Susceptibility of European cultivars of Italian and perennial ryegrass to crown and stem rust. Euphytica 176:167–181. doi:10.1007/s10681-010-0200-5

    Article  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133. doi:10.1073/pnas.1533501100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria-Guerra RE, Rosales-Mendoza S, Chang S, Haudenshield JS, Padmanaban A, Rodriguez-Zas S, Hartman GL, Ghabrial SA, Korban SS (2010) Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theor Appl Genet 120:1315–1333. doi:10.1007/s00122-009-1258-0

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356. doi:10.1046/j.1439-0523.2001.00615.x

    Article  CAS  Google Scholar 

  • Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MS, Pfeifer M, Lübberstedt T, Asp T (2012) A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genom 13:140. doi:10.1186/1471-2164-13-140

    Article  CAS  Google Scholar 

  • Svensson B, Svendsen I, Højrup P, Roepstorff P, Ludvigsen S, Poulsen FM (1992) Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry 31:8767–8770

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yeo Y-S, Zhao Y, O’Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J (2007) Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J Biol Chem 282:31744–31754. doi:10.1074/jbc.M703378200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455. doi:10.1007/s00018-003-3231-4

    Article  CAS  PubMed  Google Scholar 

  • Torto-Alalibo T, Collmer CW, Gwinn-Giglio M (2009) The plant-associated microbe gene ontology (PAMGO) consortium: community development of new gene ontology terms describing biological processes involved in microbe-host interactions. BMC Microbiol 9(Suppl 1):S1. doi:10.1186/1471-2180-9-S1-S1

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Vossen E, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882. doi:10.1046/j.1365-313X.2003.01934.x

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations

  • Vargas WA, Martín JMS, Rech GE, Rivera LP, Benito EP, Díaz-Mínguez JM, Thon MR, Sukno SA (2012) Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotrichum graminicola in maize. Plant Physiol 158:1342–1358. doi:10.1104/pp.111.190397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (1994) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  Google Scholar 

  • Wang L (2011) Biological functions of Arabidopsis TGA1 and TGA4 transcription factors. Ph. D. thesis, University of Saskatchewan, Seskatchewan, Canada. http://hdl.handle.net/10388/ETD-2011-11-214

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. doi:10.1093/bioinformatics/btp612

    Article  PubMed  Google Scholar 

  • Wang X-M, Gaudet DA, Liu W, Frick M, Puchalski B, Lu Z-X, Leggett F, Kang Z-S, Laroche A (2014a) Defence responses including hypersensitive cell death, oxidative burst and defence gene expression in “Moro” wheat inoculated with Puccinia striiformis. Can J Plant Pathol 36:202–215. doi:10.1080/07060661.2014.920919

    Article  Google Scholar 

  • Wang Y, Kwon SJ, Wu J, Choi J, Lee Y, Agrawal GK, Tamogami S, Rakwal R, Park S, Kim B-G, Jung K, Kang KY, Kim SG, Kim ST (2014b) Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection. Plant Pathol J 30:343–354. doi:10.5423/PPJ.OA.06.2014.0055

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci USA 108:7339–7344. doi:10.1073/pnas.1011739108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawada AM, Rogacev KS, Müller S, Rotter B, Winter P, Fliser D, Heine GH (2014) Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease. Epigenetics 9:161–172. doi:10.4161/epi.26931

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hu Y, Wang C, Ji W (2011) Gene expression in wheat induced by inoculation with Puccinia striiformis West. Plant Mol Biol Rep 29:458–465. doi:10.1007/s11105-010-0245-6

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support program (FKZ 511-06.01-28-1-45.010-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bojahr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animal performed by any of the authors.

Additional information

Communicated by A. H. Schulman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojahr, J., Nhengiwa, O., Krezdorn, N. et al. Massive analysis of cDNA ends (MACE) reveals a co-segregating candidate gene for LpPg1 stem rust resistance in perennial ryegrass (Lolium perenne). Theor Appl Genet 129, 1915–1932 (2016). https://doi.org/10.1007/s00122-016-2749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2749-4

Keywords

Navigation