Skip to main content
Log in

QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock ‘Börner’ (V. riparia Gm183 × V. cinerea Arnold)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

In the grapevine cultivar ‘Börner’ QTLs for black rot resistance were detected consistently in several independent experiments. For one QTL on chromosome 14 closely linked markers were developed and a detailed map provided.

Abstract

Black rot is a serious grapevine disease that causes substantial yield loss under unfavourable conditions. All traditional European grapevine cultivars are susceptible to the causative fungus Guignardia bidwellii which is native to North America. The cultivar ‘Börner’, an interspecific hybrid of V. riparia and V. cinerea, shows a high resistance to black rot. Therefore, a mapping population derived from the cross of the susceptible breeding line V3125 (‘Schiava grossa’ × ‘Riesling’) with ‘Börner’ was used to carry out QTL analysis. A resistance test was established based on potted plants which were artificially inoculated in a climate chamber with in vitro produced G. bidwellii spores. Several rating systems were developed and tested. Finally, a five class scheme was applied for scoring the level of resistance. A major QTL was detected based on a previously constructed genetic map and data from six independent resistance tests in the climate chamber and one rating of natural infections in the field. The QTL is located on linkage group 14 (Rgb1) and explained up to 21.8 % of the phenotypic variation (LOD 10.5). A second stable QTL mapped on linkage group 16 (Rgb2; LOD 4.2) and explained 8.5 % of the phenotypic variation. These two QTLs together with several minor QTLs observed on the integrated map indicate a polygenic nature of the black rot resistance in ‘Börner’. A detailed genetic map is presented for the locus Rgb1 with tightly linked markers valuable for the development for marker-assisted selection for black rot resistance in grapevine breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Adam-Blondon AF, Jaillon O, Vezzulli S, Zharkikh A, Troggio M, Velasco R (2011) Genome sequence initiatives. In: Adam-Blondon AF, Martinez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of grapes. Science, Enfield, pp 211–234

    Chapter  Google Scholar 

  • Agrios GN (2005) Plant Pathology. Elsevier/Academic, Amsterdam, pp 952–954

    Google Scholar 

  • Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Mol Breed 19:103–111

    Article  CAS  Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377

    Article  CAS  PubMed  Google Scholar 

  • Barrett HC (1953) A survey of black rot resistance of the foliage of wild grape species. Proc Am Soc Hortic Sci 62:319–322

    Google Scholar 

  • Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176

    Article  PubMed  Google Scholar 

  • Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675

    Article  CAS  PubMed  Google Scholar 

  • Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl E, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53

    Article  PubMed  Google Scholar 

  • Caltrider PG (1960) Growth and sporulation of Guignardia bidwellii in pure culture and in the field. Phytopathology 50:630

    Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Dalbó MA, Weeden NF, Reisch BI (2000) QTL analysis of disease resistance in interspecific hybrid grapes. Act Hortic 528:215–219

    Google Scholar 

  • Dalbó MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126:83–89

    Google Scholar 

  • Demaree JB, Dix IW, Magoon CA (1937) Observations on the resistance of grape varieties to black rot and downy mildew. Proc Am Soc Hortic Sci 35:451–460

    Google Scholar 

  • Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124

    CAS  Google Scholar 

  • Fechter I, Hausmann L, Zyprian E, Daum M, Holtgräwe D, Weisshaar B, Töpfer R (2014) QTL analyses for flowering time and ripening traits suggest an impact of a genomic region on linkage group 1 in Vitis. Theor Appl Genet (in press). doi:10.1007/s00122-014-2310-2

  • Ferrin DM, Ramsdell DC (1978) Influence of conidia dispersal and environment on infection of grape by Guignardia bidwellii. Phytopathology 68:892–895

    Article  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harms M, Holz B, Hoffmann C, Lipps H-P, Silvanus W (2005) Occurrence of Guignardia bidwellii, the causal fungus of black rot on grapevine, in the vine growing areas of Rhineland-Palatinate, Germany. In: Alford DV, Backhaus GF (eds) Symposium Proceedings No. 81. Plant protection and plant health in Europe: introduction and spread of invasive species, Berlin, Germany, 9–11 June 2011, pp 127–132

  • Hoffman LE, Wilcox WF, Gadoury DA, Seem RC (2002) Influence of grape berry age on susceptibility to Guignardia bidwelli and its incubation period length. Phytopathology 92:1068–1076

    Article  PubMed  Google Scholar 

  • Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. TheorAppl Genet 116:427–438

    Article  CAS  Google Scholar 

  • Jabco JP, Nesbitt WB, Werner DJ (1985) Resistance of various classes of grapes to the bunch and muscadine grape forms of black rot. J Am Soc Hortic Sci 110:762–765

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–465

    Article  CAS  PubMed  Google Scholar 

  • Jailloux F (1992) In vitro production of the teleomorph of Guignardia bidwellii, causal agent of black rot of grapevine. Can J Bot 70:254–257

    Article  Google Scholar 

  • Jermini M, Gessler C (1996) Epidemiology and control of grape black rot in southern Switzerland. Plant Dis 80:322–325

    Article  Google Scholar 

  • Jones DA, Takemoto D (2004) Plant innate immunity-direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Kuo KC, Hoch HC (1996) The parasitic relationship between Phyllosticta ampelicida and Vitis vinifera. Mycologia 88:626–634

    Article  Google Scholar 

  • Lemke L, Rex M, Zyprian E, Töpfer R (2011) A simple, inexpensive and environmentally friendly method for high throughput DNA extraction from grapevine (Vitis spp.). Vitis 50:7–10

    CAS  Google Scholar 

  • Loskill B, Molitor D, Koch E, Harms M, Berkelmann-Löhnertz B, Hoffmann C, Kortekamp A, Porten M, Louis F, Maixner M (2009) Strategien zur Regulation der Schwarzfäule (Guignardia bidwellii) im ökologischen Weinbau. http://www.orgprints.org/17072/ (10.06.2013)

  • Loskill B, Kortekamp A, Harms M, Koch E, Berkelmann-Löhnertz B, Molitor D, Maixner M. (2010) Schwarzfäule (Guignardia bidwellii) der Rebe––Befallsprävention und Möglichkeiten der Regulation im ökologischen Weinbau. 57. Deutsche Pflanzenschutztagung, 6.–9. September 2010 Humboldt-Universität zu Berlin––Kurzfassungen der Beiträge. Julius-Kühn-Archiv 428:71–79

  • Lüstner G (1935) Auftreten der Schwarzfäule (Black rot) der Rebe in Deutschland. Nachrichtenbl Dt Pflanzenschutzd 15:27

  • Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43:163–177

    Article  Google Scholar 

  • Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Nemorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278

    Article  PubMed  Google Scholar 

  • Martins WS, Lucas DCS, Neves KFS, Bertioli DJ (2009) WebSat––a web software for MicroSatellite marker development. Bioinformation 3:282–283

    Article  PubMed Central  PubMed  Google Scholar 

  • Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Act Hortic 603:451–456

    CAS  Google Scholar 

  • Molitor D, Berkelmann-Loehnertz B (2011) Simulating the susceptibility of clusters to grape black rot infections depending on their phenological development. Crop Prot 30:1649–1654

    Article  CAS  Google Scholar 

  • Molitor D, Baus O, Berkelmann-Lohnertz B (2011) Protective and curative grape black rot control potential of pyraclostrobin and myclobutanil. J Plant Dis Prot 118:161–167

    CAS  Google Scholar 

  • OIV (2009) 2nd edition of the OIV descriptor list for grape varieties and Vitis species. Organisation Internationale de la Vigne et du Vin, Organistion Intergouvernementale, Paris. http://www.oiv.int (10.06.2013)

  • Pezet R, Jermini M (1989) Le Black Rot de la vigne: symptome, épidémioloie et lutte. Rev Suisse Vitic Arboric Hortic 21:27–34

  • Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P, Mahanil S, Cadle-Davidson L (2011) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101:502–508

    Article  PubMed  Google Scholar 

  • Ramsdell DC, Milholland RD (1988) Black rot. In: Pearson RC, Goheen AC (eds) Compendium of grape diseases. APS, USA, pp 15–17

    Google Scholar 

  • Reddick D (1911) The black rot disease of grapes. Cornell Univ Agric Exp Stat Bull 293:298–364

    Google Scholar 

  • Rex F, Fechter I, Hausmann L, Töpfer R (2011) Development of a method for phenotyping black rot (Guignardia bidwellii) resistance on grapevine (Vitis spec.). Julius-Kühn-Archiv 430:54–57

    Google Scholar 

  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, USA, pp 365–386

    Google Scholar 

  • Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176

    Article  CAS  PubMed  Google Scholar 

  • Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. In: Flachowsky H, Hanke MV (eds) Fruit, vegetable and cereal science and biotechnology, vol 5. Methods in temperate fruit breeding, vol Special Issue 1. Global Science Books, UK, pp 79–100

  • Van Ooijen JW (2006) JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Netherlands

  • Van Ooijen JW (2009) MapQTL® 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Netherlands

  • Welter LJ, Gokturk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Mol Breed 20:359–374

    Article  CAS  Google Scholar 

  • Zhang JK, Hausmann L, Eibach R, Welter LJ, Töpfer R, Zyprian EM (2009) A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119:1039–1051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research funding from the Forschungsring des Deutschen Weinbaus (FDW) and the Federal Ministry of Education and Research (BMBF; Grant No. 0315460B). We also thank Marco Harms (Dienstleistungszentrum ländlicher Raum Rheinpfalz, Neustadt, Germany) for providing the black rot isolate Mo05; Eva Herzog (University Giessen) for her helpful statistical support; Rudolf Eibach, Eva Zyprian, and Florian Schwander for valuable technical advice and fruitful discussions.

Conflict of interest

The authors declare that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Hausmann.

Additional information

Communicated by Christine A. Hackett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rex, F., Fechter, I., Hausmann, L. et al. QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock ‘Börner’ (V. riparia Gm183 × V. cinerea Arnold). Theor Appl Genet 127, 1667–1677 (2014). https://doi.org/10.1007/s00122-014-2329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2329-4

Keywords

Navigation