Skip to main content
Log in

Global solutions to a chemotaxis model with consumption of chemoattractant

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is devoted to the following chemotaxis system

$$\left\{ \begin{array}{llll}u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(S(u)\nabla v),\quad &x\in \Omega,\quad t>0,\\ v_t=\Delta v-uv,\quad &x\in\Omega,\quad t>0,\end{array} \right.$$

under homogeneous Neumann boundary conditions in a smooth bounded domain \({\Omega\subset \mathbb{R}^n}\) (\({n\geq2}\)), not necessarily being convex. There are some constants \({c_D > 0}\), \({c_S > 0}\), \({m\in\mathbb{R}}\) and \({q\in\mathbb{R}}\) such that

$$D(u) \geq c_D(u+1)^{m-1} \quad\text{and} \quad S(u)\leq c_S(u+1)^{q-1}\quad for all \,\,\,u\geq0.$$

If \({q < m+\frac{n+2}{2n}}\), it is shown that the model possesses a unique global classical solution which is uniformly bounded; if \({q < \frac{m}{2}+\frac{n+2}{2n}}\), the global existence of solution is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: H. J. Schmeisser, H. Triebel (Eds.), Function Spaces: Differential Operators and Nonlinear Analysis. Teubner-Texte Math., vol. 133, Teubner, Stuttgart, Leipzig, pp. 9–126 (1993)

  2. Cieślak, T.C. Stinner: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

  3. Cieślak T., Stinner C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cieślak T., Stinner C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae M., Kang K., Lee J.: Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete Contin. Dyn. Syst. A 33, 2271–2297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chae M., Kang K., Lee J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Francesco M., Lorz A., Markowich P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. Ser. A 28, 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan R.J., Lorz A., Markowich P.A.: Global solutions to the coupled chemotaxis-fluid equations. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duan R.J., Xiang Z.Y.: A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion. Int. Math. Res. Not. 2014, 1833–1852 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Friedman A.: Partial Differential Equations. Holt, Rinehart and Winston (1969)

    MATH  Google Scholar 

  11. Hillen T., Painter K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishida S., Seki K., Yokota T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  15. Kowalczyk R., Szymańska Z.: On the global existence of solutions to an aggregation model. J. Math. Anal. Appl. 343, 379–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li T., Suen A., Winkler M., Xue C.: Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms. Math. Models Methods Appl. Sci. 25, 721–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lorz A.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu J.G., Lorz A.: A coupled chemotaxis-fluid model: global existence. Ann. I. H. Poincaré-AN 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nirenberg L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa Cl. Sci. 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  20. Tao Y., Wang Z.A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23, 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tao Y., Winkler M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. Ser. A 32, 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tao Y., Winkler M.: Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion. Ann. I. H. Poincaré-AN 30, 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tao Y., Winkler M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao Y., Winkler M.: Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 252, 2520–2543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tao Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 381, 521–529 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn, Applied Mathematical Sciences, vol. 68. Springer, New York (1997)

    Book  Google Scholar 

  27. Tuval I., Cisneros L., Dombrowski C., Wolgemuth C.W., Kessler J.O., Goldstein R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  28. Wang L., Li Y., Mu C.: Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. Ser. A 34, 789–802 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang L., Mu C., Zhou S.: Boundedness in a parabolic–parabolic chemotaxis system with nonlinear diffusion. Z. Angew. Math. Phys. 65, 1137–1152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang L., Mu C., Lin K., Zhao J.: Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Z. Angew. Math. Phys. 66, 1633–1648 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang Y., Xiang Z.: Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system. Z. Angew. Math. Phys. 66, 3159–3179 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winkler M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Winkler M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Winkler M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283, 1664–1673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Winkler M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler M.: Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–352 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Winkler M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. 54, 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Tran. Am. Math. Soc., 2015. doi:10.1090/tran/6733

  41. Zhang Q., Li Y.: Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source. Z. Angew. Math. Phys. 66, 2473–2484 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang Q., Zheng X.: Global well posedness for the two dimensional incompressible Chemotaxis-Navier-Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Mu, C. & Hu, X. Global solutions to a chemotaxis model with consumption of chemoattractant. Z. Angew. Math. Phys. 67, 96 (2016). https://doi.org/10.1007/s00033-016-0693-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0693-4

Mathematics Subject Classification

Keywords

Navigation