Skip to main content
Log in

Novel Genomic Tools and Modern Genetic and Breeding Approaches for Crop Improvement

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent past, genomic tools especially molecular markers have been extensively used for understanding genome dynamics as well for applied aspects in crop breeding. Several new genomics technologies such as next generation sequencing (NGS), high-throughput marker genotyping, -omics technologies have emerged as powerful tools for understanding genome variation in crop species at DNA, RNA as well as protein level. These technologies promise to provide an insight into the way gene(s) are expressed and regulated in cell and to unveil metabolic pathways involved in trait(s) of interest for breeders not only in model-/major- but even for under-resourced crop species which were once considered “orphan” crops. In parallel, genetic variation for a species present not only in cultivated genepool but even in landraces and wild species can be harnessed by using new genetic approaches such as advanced-backcross QTL (AB-QTL) analysis, introgression libraries (ILs), multi-parent advanced generation intercross (MAGIC) population and association genetics. The gene(s) or genomic regions, responsible for trait(s) of interest, identified either through conventional linkage mapping or above mentioned approaches can be introgressed or pyramided to develop superior genotypes through molecular breeding approaches such as marker-assisted back crossing (MABC), marker assisted recurrent selection (MARS) and genome wide selection (GWS). This article provides an overview on some recent genomic tools and novel genetic and breeding approaches as mentioned above with a final aim of crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

eQTLs:

Express QTLs

NGS:

next generation sequencing

ILs:

introgression libraries

MAGIC:

multi-parent advanced generation intercross

AB-QTL:

advanced-backcross QTL

MABC:

marker-assisted back crossing

MARS:

marker assisted recurrent selection

GWS:

genome wide selection

SNP:

single nucleotide polymorphism

References

  1. Varshney RK & Tuberosa R, Edited, Genomics-assisted crop improvement: Genomics approaches and platforms, vol 1, Springer (2007) p 386.

    Google Scholar 

  2. Bolot S, Abrouk M, Masood-Ouraishi U, Stein N, Messing J, Feuillet C & Salse J, Curr Opin Plant Biol, 12 (2009) 119.

    Article  PubMed  CAS  Google Scholar 

  3. King GJ, In Model plants and crop improvement (RK Varshney, RMD Koebner, Editors), Taylor and Francis (2006) pp 33–70.

    Chapter  Google Scholar 

  4. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D & Tanksley SD, Plant Physiol, 138 (2005) 1310.

    Article  PubMed  CAS  Google Scholar 

  5. Varshney RK, Graner A & Sorrells ME, Trends Plant Sci, 10 (2005) 621.

    Article  PubMed  CAS  Google Scholar 

  6. Stein N & Graner A, In Cereal genomics (PK Gupta, RK Varshney, Editors), Kluwer Academic Publishers, Dordrecht, The Netherlands (2004) pp 331–360.

    Google Scholar 

  7. Salvi S & Tuberosa R, Trends Plant Sci, 10 (2005) 297.

    Article  PubMed  CAS  Google Scholar 

  8. Varshney RK & Tuberosa R, Edited, Genomics-assisted crop improvement: Genomics applications in crops, vol 2, Springer (2007) p 509.

    Google Scholar 

  9. Varshney RK, Nayak SN, May GD & Jackson SA, Trends Biotechnol (2009) (in press).

    Google Scholar 

  10. Varshney RK. In Molecular techniques in crop improvement, vol 2, (SM Jain, DS Brar, Editors). Springer, The Netherlands (2009) (in press).

    Google Scholar 

  11. Service RF, Science, 311 (2006) 1544.

    Article  PubMed  CAS  Google Scholar 

  12. Hudson M, Mol Ecol Resour, 8 (2008) 3.

    Article  PubMed  CAS  Google Scholar 

  13. Mardis ER, Annu Rev Genomics Hum Genet, 9 (2008) 387.

    Article  PubMed  CAS  Google Scholar 

  14. Shendure J & Ji H, Nat Biotechnol, 26 (2008) 1135.

    Article  PubMed  CAS  Google Scholar 

  15. Lister R, Gregory BD & Ecker J R, Curr Opin Plant Biol, 12 (2008) 1.

    Google Scholar 

  16. Gupta PK, Trends Biotechnol, 26 (2008) 602.

    Article  PubMed  CAS  Google Scholar 

  17. Varshney RK, Hoisington DA, Nayak SN & Graner A, In Plant genomics: Methods and protocols (DJ Somers, P Langridge, JP Gustafson, Editors), Humana Press (2009) pp 283–304.

    Google Scholar 

  18. Andersen JR & Lubberstedt T, Trends Plant Sci, 8 (2003) 554.

    Article  PubMed  CAS  Google Scholar 

  19. Gupta PK & Rustgi S, Funct Integr Genomics, 4 (2004) 139.

    Article  PubMed  CAS  Google Scholar 

  20. Varshney RK, Nayak S, Jayashree B, Eshwar K, Upadhyaya HD & Hoisington DA, Jour of SAT Agriculture, 3 (2007) 1 (http://www.icrisat.org/Journal/chickpea_pigeonpea3.htm).

    Google Scholar 

  21. Barbazuk WB, Emrich SJ, Chen HD, Li L & Schnable PS, Plant J, 51 (2007) 910.

    Article  PubMed  CAS  Google Scholar 

  22. Hyten, DL, Song O, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND & Cregan PB, Theor Appl Genet, 116 (2008) 945.

    Article  PubMed  CAS  Google Scholar 

  23. May GD, Lekha PT, Kashiwagi J, Huntley JJ, Farmer AD, Cook DR & Varshney RK, In Plant and animal genome XVI Conf, San Diego, USA (2008) P385 (http://www.intlpag.org/l6/abstracts/PAG16-PO5f385.html).

    Google Scholar 

  24. Rostocks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ & Waugh R, Proc Natl Acad Sci, USA, 103 (2006) 18656.

    Article  CAS  Google Scholar 

  25. Akhunov E, Nicolet C & Dvorak J, Theor Appl Genet, (2009) DOI 10.1007/s00122-009-1059-5.

    Google Scholar 

  26. Hyten DL, Smith JR, Frederick RD, Tucker ML, Song O & Cregan PB, Crop Sci, 49 (2009) 265.

    Article  CAS  Google Scholar 

  27. Sreenivasulu N, Kavikishor PB, Varshney RK & Altschmied L, Curr Sci, 83 (2002) 965.

    CAS  Google Scholar 

  28. Sreenivasulu N, Varshney RK, Kavikishor PB & Weschke W, In Cereal genomics (PK Gupta, RK Varshney, Editors), Kluwer Academic Publishers, Dordrecht, The Netherlands (2004) pp 483–514.

    Google Scholar 

  29. Jansen RC & Nap JP, Trends Genet, 17 (2001) 388.

    Article  PubMed  CAS  Google Scholar 

  30. de Koning D-J & Haley CS, Trends Genet, 21 (2005) 377

    Article  PubMed  CAS  Google Scholar 

  31. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Canet G, Linsley PS, Mao M, Stoughton RB & Friend SH, Nature, 422 (2003) 297.

    Article  PubMed  CAS  Google Scholar 

  32. Jansen RC, Jannink JL & Beavis WD, Crop Sci, 43 (2003) 829.

    Article  CAS  Google Scholar 

  33. Kirst M & Yu O, In Genomics assisted crop improvement: Genomics approaches and platforms, vol 1 (RK Varshney and R Tuberosa, Editors), Springer (2007) pp 245–266.

    Chapter  Google Scholar 

  34. Keurentjes JJ, Fu J, Terpstra IR, Garcia JIM, van den Ackerveken G & Snoek B, Proc Natl Acad Sci, USA, 104 (2007) 1708.

    Article  PubMed  CAS  Google Scholar 

  35. Kazuki S, Cell Technol, 25 (2006) 1399.

    Google Scholar 

  36. Taylor J, King RD, Altmann T & Fiehn O, Bioinformatics, 18 (2002) 214.

    Article  Google Scholar 

  37. Maloney V, BioTeach J, 2 (2004) 92.

    Google Scholar 

  38. Saghatelian A, Trauger SA, Siuzdak G & Cravatt BF, Biochemistry, 16 (2004) 14332.

    Article  CAS  Google Scholar 

  39. Jacobs DI, van der Heijden R & Verpoorte R, Phytochem Analysis, 11 (2000) 277.

    Article  CAS  Google Scholar 

  40. van Wijk KJ, Plant Physiol, 126 (2001) 501.

    Article  PubMed  Google Scholar 

  41. Hirano H, Islam N & Kawasaki H, J Phytochem, 16 (2004) 1487.

    Article  CAS  Google Scholar 

  42. Tsugita A, Kamo M, Kawakami T & Ohki Y, Electrophoresis, 17 (1996) 855.

    Article  PubMed  CAS  Google Scholar 

  43. Chang WW, Huang L, Shen M, Webster C, Burlingame AL & Roberts JK, Plant Physiol, 122 (2000) 295.

    Article  PubMed  CAS  Google Scholar 

  44. Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S & Chakraborty N, Mol Cell Proteomics, 6 (2007) 1868.

    Article  PubMed  CAS  Google Scholar 

  45. Pandey A, Chakraborty S, Datta A & Chakraborty N, Mol Cell Proteomics, 7 (2008) 88.

    PubMed  CAS  Google Scholar 

  46. Tanksley S & McCouch S, Science, 277 (1997) 1063.

    Article  PubMed  CAS  Google Scholar 

  47. Swamy BP & Sarla N, Biotechnol Adv, 26 (2008) 106.

    Article  PubMed  CAS  Google Scholar 

  48. Alisdair R F, Tadmor Y & Zamir D, Curr Opin Plant Biol, 9 (2006) 196.

    Article  Google Scholar 

  49. Hajjar R & Hodkkgkin T, Euphytica, 156 (2007) 1.

    Article  Google Scholar 

  50. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Oian O, Kitano H & Matsuoka M, Science, 309 (2005) 741.

    Article  PubMed  CAS  Google Scholar 

  51. Maxted N, Scholten MA, Codd R & Ford-Lloyd BV, Biol Cons, 140 (2007) 142.

    Article  Google Scholar 

  52. Fernie AR & Willmitzer L, In Handbook of plant biotechnology (P Christou, HK Klee, Editors), Wiley, Chichester, UK (2004).

    Google Scholar 

  53. Grandillo S, Tanksley SD & Zamir D, In Genomics assisted crop improvement: Genomics approaches and platforms, vol 1 (RK Varshney and R Tuberosa, Editors), Springer (2007) pp 121–150.

    Chapter  Google Scholar 

  54. Monforte AJ & Tanksley SD, Genome, 43 (2000) 803.

    PubMed  CAS  Google Scholar 

  55. Matus I, Corey A, Filchkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W & Waugh R, Genome, 46 (2003) 1010.

    Article  PubMed  CAS  Google Scholar 

  56. Wan XY, Wan JM, Su CC, Wang CM, Shen WB, Li JM, Wang HL, Jiang L, Liu SJ, Chen LM, Yasui H & Yoshimura A, Theor Appl Genet, 110 (2004) 71.

    Article  PubMed  CAS  Google Scholar 

  57. Koumproglou R, Wilkes TM, Towson P, Wang XY, Beyon J, Pooni HS, Newbury HJ & Kearsey MJ, Plant J, 31 (2002) 355.

    Article  PubMed  CAS  Google Scholar 

  58. Eshed Y & Zamir D, Genetics, 141 (1995) 1147.

    PubMed  CAS  Google Scholar 

  59. Eshed Y & Zamir D, Genetics, 143 (1996) 1807.

    PubMed  CAS  Google Scholar 

  60. Canady MA, Meglic V & Chetelat RT, Genome, 48 (2005) 685.

    Article  PubMed  CAS  Google Scholar 

  61. von Korff M, Wang H, Leon J & Pillen K, Theor Appl Genet, 109 (2004) 1736.

    Article  CAS  Google Scholar 

  62. Schmalenbach I & Pillen K, Theor Appl Genet, 118 (2009) 1411.

    Article  PubMed  Google Scholar 

  63. Tian F, Li de J, Fu O, Zhu ZF, Fu YC, Wang XK & Sun CO, Theor Appl Genet, 112 (2006) 570.

    Article  PubMed  CAS  Google Scholar 

  64. Tadmor Y, Fridman E, Gur A, Larkov O, Lastochkin E, Ravid U, Zamir D & Lewinsohn E, J Agric Food Chem, 50 (2002) 2005.

    Article  PubMed  CAS  Google Scholar 

  65. Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A & Powel A, Theor Appl Genet, 111 (2005) 1396.

    Article  PubMed  CAS  Google Scholar 

  66. Jie C, Bughio HUR, Da-Zhou C, Guang-Jie L, Kang-Le Z & Jie-Yun Z, Rice Science, 13 (2006) 15.

    Google Scholar 

  67. Tanksley SD & Nelson JC, Theor Appl Genet, 92 (1996) 191.

    Article  Google Scholar 

  68. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J & Beck-Bunn T, Theor Appl Genet, 92 (1996) 213.

    Article  CAS  Google Scholar 

  69. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD & McCouch SR, Genetics, 150 (1998) 899.

    PubMed  CAS  Google Scholar 

  70. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J & McCouch SR, Theor Appl Genet, 102 (2001) 41.

    Article  CAS  Google Scholar 

  71. McCouch SR, Sweeney M, Li JM, Jiang H, Thomson M, Septiningsih E, Edward J, Moncada P, Xiao JH, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yung LP & Ahn SN, Euphytica, 154 (2007) 317.

    Article  CAS  Google Scholar 

  72. Huang XO, Cöster H, Ganal MW & Röder MS, Theor Appl Genet, 106 (2003) 1379.

    PubMed  CAS  Google Scholar 

  73. Kunert A, Naz AA, Dedeck O, Pillen K & Leon J, Theor Appl Genet, 115 (2007) 683.

    Article  PubMed  CAS  Google Scholar 

  74. Ho JC, McCouch SR & Smith ME, Theor Appl Genet, 105 (2002) 440.

    Article  PubMed  CAS  Google Scholar 

  75. Mano Y & Omori F, Breed Sci, 58 (2008) 3217.

    Article  Google Scholar 

  76. Pillen K, Zacharias A & Leon J, Theor Appl Genet, 107 (2003) 340.

    Article  PubMed  CAS  Google Scholar 

  77. Pillen K, Zacharias A & Leon J, Theor Appl Genet, 108 (2004) 591.

    Article  CAS  Google Scholar 

  78. Talamè V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R & Tuberosa R, Ann Appl Biol, 144 (2004) 309.

    Article  Google Scholar 

  79. Li JZ, Huang XO, Heinrichs F, Ganal MW & Röder MS, Theor Appl Genet, 110 (2005) 356.

    Article  PubMed  CAS  Google Scholar 

  80. Li JZ, Huang XO, Heinrichs F, Ganal MW & MS Röder, Genome, 49 (2006) 454.

    Article  PubMed  CAS  Google Scholar 

  81. Yun SJ, Gyenis L, Bossolini E, Hayes PM, Matus I, Smith KP, Steffenson BJ, Tuberosa R & Muehlbauer GJ, Crop Sci, 46 (2006) 1179.

    Article  Google Scholar 

  82. Gyenis L, Yun SJ, Smith KP, Steffenson BJ, Bossolini E, Sanguineti MC & Muehlbauer GJ, Genome, 50 (2007) 714.

    Article  PubMed  CAS  Google Scholar 

  83. von Korff M, Wang H, Leon J & Pillen K, Theor Appl Genet, 112 (2006) 1221.

    Article  CAS  Google Scholar 

  84. Scchmalenbach I, Leon J & Pillen K, Theor Appl Genet, 118 (2009) 483.

    Article  CAS  Google Scholar 

  85. Doerge RW, Nat Rev Genet, 3 (2002) 43.

    Article  PubMed  CAS  Google Scholar 

  86. Buckler ES & Thornsberry J, Curr Opin Plant Biol, 5 (2002) 107.

    Article  PubMed  CAS  Google Scholar 

  87. Flint-Garcia SA, Thornsberry JM & Buckler ES, Annu Rev Plant Biol, 54 (2003) 357.

    Article  PubMed  CAS  Google Scholar 

  88. Yu J & Buckler ES, Curr Opin Biotechnol, 17 (2006) 155.

    Article  PubMed  CAS  Google Scholar 

  89. Pritchard JK, Stephens M, Rosenberg NA & Donnelly P, Am J Hum Genet, 67 (2000) 170.

    Article  PubMed  CAS  Google Scholar 

  90. Risch N & Merikangas K, Science, 273 (1996) 1516.

    Article  PubMed  CAS  Google Scholar 

  91. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D & Buckler, Nat Genet, 28 (2001) 286.

    Article  PubMed  CAS  Google Scholar 

  92. Palaisa KA, Morgante M, Williams M & Rafalski A, Plant Cell, 15 (2003) 1795.

    Article  PubMed  CAS  Google Scholar 

  93. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandian CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J & Buckler ES, Science, 18 (2008) 330.

    Article  CAS  Google Scholar 

  94. Tracy WF, Whitt SR & Buckler ES, Crop Sci, 46 (2006) 1.

    Article  Google Scholar 

  95. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P & Van Eewuijk FA, Genetics, 168 (2004) 435.

    Article  PubMed  CAS  Google Scholar 

  96. Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Meckay IJ, Powell W & O’sullivan DM, BMC Genet, 9 (2008) 16.

    Article  PubMed  CAS  Google Scholar 

  97. Comadran J, Russell JR, van Eeuwijk FA, Ceccarelli S, Grando S, Baum M, Stanca AM, Pecchioni N, Mastrangelo AM, Akar T, Al-Yassin A, Benbelkacem A, Choumane W, Ouabbou H, Dahan R, Bort J, Araus JL, Pswarayi A, Romagosa I, Hackett CA & Thomas WTB, Euphytica, 161 (2007) 35.

    Article  Google Scholar 

  98. Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J & Purugganan MD, Genetics, 167 (2004) 1361.

    Article  PubMed  CAS  Google Scholar 

  99. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P & Nordborg M, PLoS Genet, 1 (2005) 60.

    Article  CAS  Google Scholar 

  100. Olsen KM & Purugganan MD, Genetics, 162 (2002) 941.

    PubMed  CAS  Google Scholar 

  101. Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S & Langridge P, Theor Appl Genet, 96 (1994) 435.

    Article  Google Scholar 

  102. Paull JG, Pallotta MA, Lanngridge P & The TT, Theor Appl Genet, 89 (1998) 1039.

    Google Scholar 

  103. Breseghello F & Sorrells ME, Genetics, 172 (2006) 1165.

    Article  PubMed  Google Scholar 

  104. Crossa J, Burgueno J, Drreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowaaan R, Warburton M, Franco J, Reynold M, Crouch JH & Oritz R, Genetics, 177 (2007) 1889.

    Article  PubMed  CAS  Google Scholar 

  105. Zhao J, Paul MJ, Jamar D, Ping L, van Eeuwijk F, Guusje B, Vreugdenhil D & Koornneef M, Genome, 50 (2007) 963.

    Article  PubMed  CAS  Google Scholar 

  106. Yalcin B, Flint J & Mott R, Genetics, 171 (2005) 673.

    Article  PubMed  CAS  Google Scholar 

  107. Cavanagh C, Morell M, Mackay I & Powell W, Curr Opin Plant Biol, 11 (2008) 215.

    Article  PubMed  CAS  Google Scholar 

  108. Valdar W, Flint J & Mott R, Genetics, 172 (2006) 1783.

    Article  PubMed  CAS  Google Scholar 

  109. Moose S & Mumm RH, Plant Physiol, 147 (2008) 969.

    Article  PubMed  CAS  Google Scholar 

  110. Varshney RK, Hoisington DA & Tyagi AK, Trends Biotechnol, 24 (2006) 490.

    Article  PubMed  CAS  Google Scholar 

  111. Utomo HS & Linscombe SD, Recent Pat DNA Gene Seq, 3 (2009) 53.

    Article  PubMed  CAS  Google Scholar 

  112. Collard BC & Mackill DJ, Philos Trans R Soc Lond B Biol Sci, 12 (2008) 557.

    Google Scholar 

  113. Hospital F & Charcosset, Genetics, 147 (1997) 1469.

    PubMed  CAS  Google Scholar 

  114. Frisch M, Bohn M & Melchinger AE, Crop Sci, 39 (1999) 967.

    Article  Google Scholar 

  115. Varshney RK, Thudi M, May GD & Jackson SA, Plant Breed Rev, (2009) (in press).

    Google Scholar 

  116. Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk FA, Chapman S & Podlich D, Trends Plant Sci, 11 (2006) 587.

    Article  PubMed  CAS  Google Scholar 

  117. Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M & van Eeuwijk FA, Genetics, 177 (2007) 1801.

    Article  PubMed  Google Scholar 

  118. Matthews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R & van Eeuwijk FA, Theor Appl Genet, 117 (2008) 1077.

    Article  Google Scholar 

  119. Cooper M, Podlich DW & Luo L, In Genomic assisted crop improvement: Genomics approaches and platforms, vol 1 (RK Varshney, R Tuberosa, Editors), Springer (2007) pp 57–96.

    Chapter  Google Scholar 

  120. Edward M & Johnson L, In Proc Joint Plant Breeding Symp Series of CSSA and ASHA, Corvallis, OR. Am Soc Hort Sci, Alexandria VA, (1994) pp 33–40.

    Google Scholar 

  121. Hospital F, Moreau L, Lacoudre F, Charcosset A & Galais A, Theor Appl Genet, 95 (1997) 1181.

    Article  Google Scholar 

  122. Bernardo R & Charcosset A, Crop Sci, 46 (2006) 614.

    Article  Google Scholar 

  123. Kuchel H, Fox R, Reinheimer J, Mosinoek L, Willey N, Bariana H & Jefferies S, Mol Breed, 20 (2007) 295.

    Article  Google Scholar 

  124. Ragot M, Gay G, Muller JP & Durovray J, In Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments (JM Ribaut, D Poland, Editors), Mexico, DF: CIMMYT, (2000) pp 128–130.

    Google Scholar 

  125. Ribaut JM & Ragot, M, J Exp Bot, 58 (2006) 351.

    Article  PubMed  CAS  Google Scholar 

  126. Meuwissen THE, Hayes BJ & Goddard, Genetics, 157 (2001) 1819.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, R.K., Dubey, A. Novel Genomic Tools and Modern Genetic and Breeding Approaches for Crop Improvement. J. Plant Biochem. Biotechnol. 18, 127–138 (2009). https://doi.org/10.1007/BF03263311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263311

Key words

Navigation