Skip to main content
Log in

Antimicrobial potential and seasonality of red algae collected from the southwest coast of India tested against shrimp, human and phytopathogens

  • Ecological and Environmental Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Fifteen seaweeds belong to 13 families and 6 orders of the rhodophyta were sampled for one year from April 2007 to March 2008 along the southwest coast of India (Indian Ocean). The species were examined forin vitro antimicrobial activity against six pathogenicVibrio strains isolated from moribund tiger shrimp (Penaeus monodon), six type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimpVibrio pathogens, 10 multidrug resistant clinical pathogens, four species ofCandida obtained from pulmonary TB patients and four species of plant pathogenic fungi to evaluate their potency to be used as natural antibiotics in pharmaceutical and agriculture field. Bioactivity was analyzed from crude extract of fresh and dried samples prepared from different polar and nonpolar solvents. Of these, four species of red algae (Asparagopsis taxiformis, Laurencia ceylanica, Laurencia brandenii, Hypnea valentiae) were found to be highly active. Broadest and highest activity was observed in the crude extract ofA. Taxiformis. Among the pathogens tested, shrimp pathogenicVibrios were the most susceptible organisms while phytopathogens were found to be little resistant. In the present study, methanol was found to be the best solvent for extracting antimicrobial metabolites from dried samples rather than fresh. Seasonal variation in the antimicrobial activity was observed with higher level of activity recorded fromA. Taxiformis between December and January. The active principle ofA. Taxiformis was purified in column chromatography, TLC and reverse phase HPLC. The individual HPLC peaks were subsequently tested against a panel of pathogenic microorganisms and the active constituent was identified by GC-MS. The antimicrobial profile ofA. Taxiformis suggested that lipophilic compound which was primarily composed of pyrrole-2-carboxylic acid, pentadecanoic acid and octadecanoic acid might have functional role in the chemical defence against microbial invasion and these compounds could be utilized for the development of medically potential products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adwan K., Abu-Hasan N. (1998). Gentamicin resistance in clinical strains of Enterobacteriaceae associated with reduced gentamicin uptake. Folia Microbiol., 43: 438–440.

    Article  CAS  Google Scholar 

  • Alderman D.J., Michel C. (1992). Chemotherapy in Aquaculture Today. In: Michel C., Alderman D.J., Eds, Chemotherapy in Aquaculture from Theory to Reality, Office International Des Epizooties, Paris, pp. 3–4.

    Google Scholar 

  • Ali M.S., Mazhar F., Saleem M., Jahangir M., Pervez K., Usmanghani K., Ahmad V.U. (2000a). Chemistry and biology of algae from seacoasts of Karachi. In: Ahmad V.U., Ed., Proceeding of National ONR Symposium on Arabian Sea as a Resource of Biological Diversity. HEJ Res Chem, Karachi Univ, Karachi, pp. 33–44.

    Google Scholar 

  • Ali M.S., Jahangir M., Saleem M., Pervez M.K., Hameed S., Ahmad V.U. (2000b). Metabolites of marine algae collected from Karachi-coasts of Arabian Sea. Nat. Prod. Sci., 6: 61–65.

    CAS  Google Scholar 

  • Amsaki S., Amsaki T. (1983). Vegetables from the Sea. Japan Publications, Inc Tokyo, pp. 2–16.

    Google Scholar 

  • Andrea M.M., Peres T.B., Luchini L.C., Pettinelli A.Jr. (2000). Impact of long-term pesticide applications on some soil biological parameters. J. Environ. Sci. Heal., 35: 297–307.

    Article  CAS  Google Scholar 

  • Apers S., Baronikova S., Sindambiwe J.B., Witvrouw M., De Clercq E., Vanden Berghe D., Van Marck E., Vlietinck A., Pieters L. (2001). Antiviral, haemolytic and molluscicidal activities of triterpenoid saponins fromMaesa lanceolata: establishment of structure-activity relationships. Planta Med., 67: 528–532.

    Article  PubMed  CAS  Google Scholar 

  • Arun Kumar K., Rengasamy R. (2000). Evaluation of antibacterial potential of seaweeds occurring along the coast of Tamil Nadu, India against plant pathogenic bacteriumXanthomonas oryzae pv.oryzae (Ishiyama) Dye. Bot. Mar., 43: 409–415.

    Google Scholar 

  • Ashbee H.R., Evans E.G. (2000). Fungi and skin. Microbiol. Today, 27: 132–134.

    Google Scholar 

  • Bansemir A., Blume M., Schröder S., Lindequist U. (2006). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252: 79–84.

    Article  Google Scholar 

  • Bligh E.G., Dyer W.J. (1959). A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37 (10): 911–917.

    CAS  Google Scholar 

  • Blunt J.W., Copp B.R., Hu W.P., Munro M.H.G., Northcote P.T., Prinsep M.R. (2007). Marine natural products. Nat. Prod. Rep., 24: 31–86.

    Article  PubMed  CAS  Google Scholar 

  • Campos A., Lino C.M., Cardoso S.M., Silveira M.I.N. (2005). Organochlorine pesticide residues in European sardine, horse mackerel and Atlantic mackerel from Portugal. Food Addit. Contam., 22: 642–646.

    Article  PubMed  CAS  Google Scholar 

  • Choudhury S., Sree A., Mukherjee S.C., Pattnaik P., Bapuji M. (2005).In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens. Asian Fish. Sci., 18: 285–294.

    Google Scholar 

  • Crasta J., Premila N.S., Raviraja, Sridhar K.R. (1997). Antimicrobial activity of some marine algae of Southwest Coast of India. Indian J. Mar. Sci., 26: 201–205.

    Google Scholar 

  • de Vries D.J., Beart P.M. (1995). Fishing for drugs from the sea: status and strategies. Trends Pharmacol. Sci., 16: 275–279.

    Article  PubMed  Google Scholar 

  • Dhargalkar V.K., Neelam P. (2005) Seaweed: Promising plant of the millennium. Sci. Cul., 71: 60–66.

    Google Scholar 

  • Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350–3560.

    Article  CAS  Google Scholar 

  • El-Baroty G.S., Moussa M.Y., Shallan M.A., Ali M.A., Sabh A.Z., Shalaby E.A. (2007). Contribution to the aroma, biological activities, minerals, protein, pigments and lipid contents of the red alga:Asparagopsis taxiformis (Delile) Trevisan. J. Appl. Sci. Res., 3: 1825–1834.

    Google Scholar 

  • Al-Fadhli A., Wahidulla S., D’Souza L. (2006). Glycolipids from the red algaChondria armata (Kütz.) Okamura. Glycobiology, 6: 902–915.

    Article  CAS  Google Scholar 

  • Faulkner D.J. (2001). Marine natural products. Nat. Prod. Rep., 18: 1–49.

    Article  PubMed  CAS  Google Scholar 

  • Febles C.I., Aris A., Gil-Rodriguez M.C., Hardisson A., Sierra Lopez A. (1995).In vitro study of antimicrobial activity in algae (Chlorophyta, Phaeophyta and Rhodophyta collected from the coast of Tenerife (in Spanish). Anuario del Instituto de Estudios Canarios, 34: 181–192.

    Google Scholar 

  • Filho-Lima J.V.M., Carvalho A.F.F.U., Freitas S.M. (2002). Antibacterial activity of extracts of six macroalgae from the Northeastern Brazilian Coast. Brazil. J. Microbiol., 33: 311–313.

    Google Scholar 

  • Fitton J.H. (2006). Antiviral properties of marine algae. In: Critchley A.T., Ohno M., Largo D.B., Eds, World Seaweed Resources. Windows and Macintosch. ETI Information Services, Workingham, UK, p. 7.

    Google Scholar 

  • Gao D., Okuda R., Lopez-Avila V. (2001). Supercritical fluid extraction of halogenated monoterpenes from the red algaPlocamium cartilagineum. J. A.O.A.C. Int., 84: 1313–1331.

    CAS  Google Scholar 

  • Gottlieb O.R., Borin M.R., Brito N.R. (2002). Integration of ethnobotany and phytochemistry: dream or reality? Phytochemistry, 60: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Harper M.K., Bugni T.S., Copp B.R., James R.D., Lindasay B.S., Richardson A.D., Schnabel P.C., Tasdemir D., Van-Wagoner R.M., Verbitski S.M., Ireland C.M. (2001). Introduction to the chemical ecology of marine natural products. In: McClintock J.B., Baker B.J., Eds, Marine Chemical Ecology. CRC Bocca Raton FL, pp. 267-300.

  • Harris C.A., Renfrew M.J. Woolridge M.W. (2001). Assessing the risks of pesticides residues to consumers: recent and future developments. Food Addit. Contam., 18: 1124–1129.

    Article  PubMed  CAS  Google Scholar 

  • Haslin C., Lahaye M., Pellegrini M., Chermann J.C. (2001).In vitro anti-HIV activity of sulfated cell-wall polysaccharides from gametic, carposporic and tetrasporic stages of the Mediterranean red algaAsparagopsis armata. Planta Med., 67: 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Huang X., Zhou H., Zhang H. (2006) The effect ofsargassum Fusiforme polysaccharide extracts on Vibriosis resistance and immune activity of the shrimp,Fenneropenaeus chinensis. Fish Shellfish Immunol., 20:750–757

    Article  PubMed  CAS  Google Scholar 

  • Jensen A. (1993). Present and future needs for algae and algal products. Hydrobiology, 260/261: 15–23.

    Article  Google Scholar 

  • Ki-Bong O., Hye L.J., Soon-Chun C., Jongheon S., Jae S. H., Hye-Kyeong K., Hyi-Seung L. (2008). Antimicrobial activities of the bromophenols from the red algaOdonthalia corymbifera and some synthetic derivatives. Bioorg. Med. Chem. Lett., 18 (1): 104–108.

    Article  CAS  Google Scholar 

  • Kim J., Park E.J. (2002). Cytotoxic anticancer candidates from natural resources. Curr. Med. Chem. Anti-Canc. Agents, 2: 485–537.

    Article  CAS  Google Scholar 

  • Kladi M., Vagias C., Roussis V. (2004). Volatile halogenated metabolites from marine red algae. Phytochemistry Rev., 3: 337–366.

    Article  CAS  Google Scholar 

  • Liao W.R., Lin J.Y., Shieh W.Y., Jeng W.L., Huang R. (2003). Antibiotic activity of lectins from marine algae against marineVibrios: J. Ind. Microbiol. Biotechnol., 30: 433–439.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N., Farr A., Randall R. (1951). Protein measurement with Folin phenol reagent. J. Biol. Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Maliakal S., Cheney D.P., Rorrer R.L. (2001). Halogenated monoterpene production in regenerated plantlet suspension cultures of the macrophytic red algaOcthodes secundiramea. J. Phycol., 37: 1010–1019.

    Article  CAS  Google Scholar 

  • Masuda M., Abe T., Sato S. (1997). Diversity of halogenated secondary metabolites in the red algaLaurencia nipponica (Rhodomelaceae, Ceramiales). J. Phycol., 33: 196–208.

    Article  CAS  Google Scholar 

  • Michanek G. (1979). Seaweed resources for pharmaceutical uses. In: Hoppe H.A.et al., Eds, Marine Algae in Pharmaceutical Science. Waiter de Gruyter, Ikrlin, New York, pp. 203–235.

    Google Scholar 

  • Moore R.D., Chaisson R.E. (1996). Natural history of opportunistic disease in an HIV-infected urban clinical cohort. Ann Intern Med., 124 (7): 633–642

    PubMed  CAS  Google Scholar 

  • Moriarty D.J.W. (1999). Disease control in shrimp aquaculture with probiotic bacteria microbial biosystems: New frontiers. In: Bell C.R., Brylinsky M., Johnson-Green P., Eds, Proceedings of the 8th International Symposium on Microbial Ecology, Atlantic Canada Society for Microbial Ecology, Halifax, Canada.

    Google Scholar 

  • Mtolera M.S.P., Semesi A.K. (1996). Antimicrobial activity of extracts from six green algae from Tanzania. Proc. Current Trends in Marine Botanical Research in East Africa, pp. 211-217.

  • Muñoz Crego A., López Cruz A. (1992). Drogas del mar. Sustancias Biomédicas de Algas Marinas. Universidad de Santiago de Compostela; Santiago de Compostela.

  • Munro M.H.G., Blunt J.W. (1999). Marinlit, version 10.4, Marine Chemical Group, University of Canterbury, Christchurch, New Zealand.

    Google Scholar 

  • Nash R., Rindi F., Guiry M.D. (2005). Optimum conditions for the cultivation of theTrailliella-phase ofBonnemaisonia hamifera Hariot (Bonnemaisoniales, Rhodophyta), a candidate species for secondary metabolite production.Bot. Mar., 48 (4): 257–265.

    Article  CAS  Google Scholar 

  • Norton T.A., Melkonian M., Andersen R.A. (1996). Algal biodiversity. Phycologia, 35: 308–326.

    Article  Google Scholar 

  • Padmakumar K., Ayyakkannu K. (1997). Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from southern coasts of India. Bot. Mar., 40: 507–515.

    Article  Google Scholar 

  • Paul N.A., de Nys R., Steinberg P.D. (2006). Chemical defence against bacteria in the red algaAsparagopsis armata: linking structure with function. Mar. Ecol. Prog. Ser., 306: 87–101.

    Article  CAS  Google Scholar 

  • Primavera J.H. (1994). Shrimp farming in the Asia-Pacific: environmental and trade issues and regional cooperation. Nautilus Institute Workshop on Trade and Environment in Asia-Pacific: Prospects for Regional Cooperation East-West Center, Honolulu, pp. 23-25.

  • Rao S.P., Parekh K.S. (1981). Antibacterial activity of Indian seaweed extracts. Bot. Mar., 24: 577–582.

    Article  Google Scholar 

  • Rao P.S.P., Sreenivasa Rao P., Karmarkar S.M. (1986). Antibacterial substances from brown algae. II. Effeciency of solvent in the evaluation of antibacterial substances fromSargassum johnstonni Setchel et Gardner. Bot. Mar., 29: 503–507.

    Article  CAS  Google Scholar 

  • Regunathan C., Wesley S.G. (2004). Control ofVibrio spp. in shrimp hatcheries using the green algaeTetraselmis suecica. Asian Fish. Sci., 17: 147–157.

    Google Scholar 

  • Rice E.L. (1984). Allelopathy, 2nd edn, Academic Press, New York, pp. 67–73.

    Google Scholar 

  • Robles Centeno P.O., Ballantine D.L., Gerwick W.H. (1996). Dynamics of antibacterial activity in three species of Caribbean marine algae as a function of habitat and life history. Hydrobiology, 326/327: 457–462.

    Article  Google Scholar 

  • Salvador N., Gomez-Garreta A., Lavelli L., Ribera L. (2007). Antimicrobial activity of Iberian macroalgae. Sci. Mar., 71: 101–113.

    Article  Google Scholar 

  • Schmitt T.M., Hay M.E., Lindquist N. (1995). Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology, 76: 107–123.

    Article  Google Scholar 

  • Selvin J., Lipton A.P. (2003). Shrimp disease management using bioactive marine secondary metabolites: an ecofriendly approach. Naga, 26 (1): 11–13.

    Google Scholar 

  • Selvin J., Lipton A.P. (2004). Biopotentials ofUlva fasciata andHypnea musiformis collected from the peninsular coast of India. J. Mar. Sci. Technol., 12: 1–6.

    Google Scholar 

  • Stirk W.A., Diana L., Staden R.J.V. (2007). Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J. Appl. Phycol., 19: 271–276.

    Article  CAS  Google Scholar 

  • Takaki-Campos G.M., Diu M.B.S., Koening M.L., Peretra E.C. (1988). Screening of marine algae from the Brazilian northeastern coast for antimicrobial activity. Bot. Mar., 31: 375–377.

    Article  Google Scholar 

  • Val A.G. del., Platas G., Basilio A., Cabello A., Suay J.G.I., Vicente F., Portillo E., Rio M.J. del., Reina G.G., Pelaez F. (2001). Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int. Microbiol., 4: 35–40.

    Google Scholar 

  • Verma J., Dubey N.K. (1999). Prospectives of botanical and microbial products as pesticides of tomorrow. Curr. Sci. India, 76: 172–179.

    Google Scholar 

  • Vidyavathi N., Sridhar K.R. (1991). Seasonal and geographical variation in the antimicrobial activity of seaweeds from Mangalore coast in India. Bot. Mar., 34: 279–284.

    Article  Google Scholar 

  • Vlachos V., Critchley A.T., Holy von A. (2001). Effect of post collection storage time and season on the antibacterial activity of selected southern African marine macroalgae. In: Chen F., Jiang Y., Eds, Algae and their Biotechnological Potential. Kluwer Academic Publishers, The Netherlands, pp. 207–213.

    Google Scholar 

  • Vyvyan J.R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 58: 1631–1646.

    Article  CAS  Google Scholar 

  • Williams D.H., Stone M.J., Hauch P.R., Rahman S.K. (1989). Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod., 52: 1189–1208.

    Article  PubMed  CAS  Google Scholar 

  • Williams D.H., Maplestone R.A. (1992). Why are secondary metabolites synthesized? Sophistication in the inhibition of cell wall biosynthesis by vancomycin group antibiotics. In Chadwick D.J., Whelan J., Eds, Secondary Metabolites: Their Function and Evolutions. Ciba Foundation, pp. 45-63.

  • Yamamoto I., Takahashi M., Tamura E., Maruyama H., Mori H. (1984). Antitumor activity of edible marine algae: Effect of crude fucoidan fractions prepared from edible brown seaweeds against L-1210 leukemia. Hydrobiology, 116/117: 145-148.

    Google Scholar 

  • Yavasoglu K., Ulku N., Atakan S., Guven O., Zerrin H. (2007). Antimicrobial activity of volatile components and various extracts of the red algaJania rubens. Phytother. Res., 21: 153–156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Selvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manilal, A., Sujith, S., Kiran, G.S. et al. Antimicrobial potential and seasonality of red algae collected from the southwest coast of India tested against shrimp, human and phytopathogens. Ann. Microbiol. 59, 207–219 (2009). https://doi.org/10.1007/BF03178319

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178319

Key words

Navigation