Skip to main content
Log in

Characean actin bundles as a tool for stydying actomyosin-based motility

  • Invited Article
  • Published:
The botanical magazine = Shokubutsu-gaku-zasshi Aims and scope Submit manuscript

Abstract

At the inner surface of the stagnant chloroplasts of Characeae cells, bundles of actin filaments having uniform polarity are anchored. These bundles are responsible for generating the motive force of cytoplasmic streaming. It is now possible to induce movement of either beads coated with foreign myosin or organelles associated with myosin along the characean actin bundles. The Ca2+ sensitivities of the reconstitued movements are consistent with those of the actin-activated myosin ATPases. The use of reconstituted systems is finding wide application in the detection of various myosins in materials from which myosin is not significantly purified. Furthermore, sliding velocities and the Ca2+ regulation of myosins bound to organelles are now being determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine 5′-triphosphoric acid

EDTA:

ethylene diamine tetraacetic acid

EGTA:

ethyleneglycol-bis-(β-aminoethylether) N, N, N′, N′-tetraacetic acid

HMM:

heavy meromyosin

NEM:

N-ethylmaleimide

References

  • Adams, R.J. andT.D. Pollard. 1986. Propulsion of organelles isolated fromAcanthamoeba along actin filaments by myosin-I. Nature322: 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Adelstein, R.S., J.R. Sellers, M.A. Conti, M.D. Pato andP. de Lanerolle. 1982 Regulation of smooth muscle contractile proteins by calmodulin and cyclic AMP. Fed. Proc.41: 2873–2878.

    PubMed  CAS  Google Scholar 

  • Albanesi, J.P., H. Fujisaki, J.A. Hammer III, E.D. Korn, R. Jones andM.P. Sheetz. 1985. MonomericAcanthamoeba myosin I support movementin vitro. J. Biol. Chem.260: 8649–8652.

    PubMed  CAS  Google Scholar 

  • Chen, J.C.W. andN. Kamiya. 1975. Localization of myosin in the internodal cell ofNitella as suggested by differential treatment with N-ethylmaleimide. Cell Struct. Funct.1: 1–9.

    CAS  Google Scholar 

  • —. 1981. Differential heat treatment of theNitella internodal cell and its relation to cytoplasmic streaming. Cell Struct. Funct.6: 201–207.

    Google Scholar 

  • Condeelis, J.S. 1974. The identification of F actin in the pollen tube and protoplast ofAmaryllis belladonna. Exp. Cell Res.88: 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Conzelman, K.A. andM.S. Mooseker. 1987. The 110-kD protein-calmodulin complex of the intestinal microvillus is an actin-activated MgATPase. J. Cell Biol.105: 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Crowder, M.S. andR. Cooke. 1984. The effect of myosin sulphydryl modification on the mechanics of fibre contraction. J. Muscle Res. & Cell Motility5: 131–146.

    Article  CAS  Google Scholar 

  • Ebashi, S. 1980. Regulation of muscle contraction. Proc. R. Soc. Lond. B207: 259–286.

    Article  PubMed  CAS  Google Scholar 

  • Flicker, P.F., G. Peltz, M.P. Sheetz, P. Parham andJ.A. Spudich. 1985. Site-specific inhibition of myosin-mediated motility in vitro by monoclonal antibodies. J. Cell Biol.100: 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Franke, W.W., W. Herth, W.J. VanDerWoude andD.J. Morré. 1972. Tubular and filamentous structures in pollen tubes: Possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta105: 317–341.

    Article  Google Scholar 

  • Griffith, L.M., S.M. Downs andJ.A. Spudich. 1987. Myosin light chain kinase and myosin light chain phosphatase fromDictyostelium: Effects of reversible phosphorylation on myosin structure and function. J. Cell. Biol.104: 1309–1323.

    Article  PubMed  CAS  Google Scholar 

  • Hammer, J.A. III, J.P. Albanesi andE.D. Korn. 1983. Purification and characterization of a myosin I heavy chain kinase fromAcanthamoeba castellanii. J. Biol. Chem.258: 10168–10175.

    PubMed  CAS  Google Scholar 

  • Huxley, A.F. andR. Niedergerke. 1954. Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature173: 971–973.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. andJ. Hanson. 1954. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature173: 973–976.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, T.R., S.M. Block, B.T. White andJ.A. Spudich. 1987. Movement of myosin fragements in vitro: Domains involved in force production. Cell48: 953–963.

    Article  PubMed  CAS  Google Scholar 

  • Kamitsubo, E. 1966. Motile protoplasmic fibrils in cells of Characeae. II. Linear fibrillar structure and its bearing on protoplasmic streaming. Proc. Jap. Acad.42: 640–643.

    Google Scholar 

  • —. 1981. Effect of supraoptimal temperatures on the function of the subcortical fibrils and an endoplasmic factor inNitella internodes. Protoplasma109: 3–12.

    Article  Google Scholar 

  • Kamiya, N. 1986. Cytoplasmic streaming in giant algal cells: A historical survey of experimental approaches. Bot. Mag. Tokyo99: 441–467.

    Article  CAS  Google Scholar 

  • — andK. Kuroda. 1956. Velocity distribution of the protoplasmic streaming inNitella cells. Bot. Mag. Tokyo69: 544–554.

    Google Scholar 

  • Kato, T. andY. Tonomura. 1977. Identification of myosin inNitella flexilis. J. Biochem.82: 777–782.

    PubMed  CAS  Google Scholar 

  • Kersey, Y.M., P.K. Hepler, B.A. Palevitz andN.K. Wessells. 1976. Polarity of actin filaments in Characean algae. Proc. Nat. Acad. Sci. USA73: 165–167.

    Article  PubMed  CAS  Google Scholar 

  • — andN.K. Wessells. 1976. Localization of actin filaments in internodal cells of characean algae. A scanning and transmission electron microscope study. J. Cell Biol.68: 264–275.

    Article  PubMed  CAS  Google Scholar 

  • Kohama, K. andJ. Kendrick-Jones. 1986. The inhibitory Ca2+-regulation of the actin-activated Mg-ATPase activity of myosin fromPhysarum polycephalum plasmodia. J. Biochem.99: 1433–1446.

    PubMed  CAS  Google Scholar 

  • —. 1985. Inhibitory Ca2+ control of movement of beads coated withPhysarum myosin along actin cables inChara internodal cells. Protoplasma129: 88–91.

    Article  Google Scholar 

  • Kohno, T. andT. Shimmen. 1987. Ca2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma141: 177–179.

    Article  CAS  Google Scholar 

  • — and —. 1988. Accelerated sliding of pollen tube organelles alongCharaceae actin bundles regulated by Ca2+. J. Cell Biol.106: 1539–1543.

    Article  PubMed  CAS  Google Scholar 

  • Kron, S.J. andJ.A. Spudich. 1986. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Nat. Acad. Sci. USA83: 6272–6276.

    Article  PubMed  CAS  Google Scholar 

  • Kuczmarski, E.R. andJ.A. Spudich. 1980. Regulation of myosin self-assembly: Phosphorylation ofDictyostelium heavy chain inhibits formation of thick filaments. Proc. Nat. Acad. Sci. USA77: 7292–7296.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda, K. 1983. Cytoplasmic streaming in characean cells cut open by microsurgery. Proc. Jap. Acad. (B)59: 126–130.

    Google Scholar 

  • —. 1975. Active movement ofNitella chloroplastsin vitro. Proc. Jap. Acad.51: 774–777.

    Google Scholar 

  • Maruta, H., W. Baltes, P. Dieter, K. Marmé andG. Gerisch. 1983. Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells ofDictyostelium discoideum. EMBO J.2: 535–542.

    PubMed  CAS  Google Scholar 

  • —. 1977.Acanthamoeba myosin II. J. Biol. Chem.252: 6501–6509.

    PubMed  CAS  Google Scholar 

  • —. 1979. Multiple forms ofAcanthamoeba myosin I. J. Biol. Chem.254: 3624–3630.

    PubMed  CAS  Google Scholar 

  • Mascarenhas, J.P. andJ. Lafoutain. 1972. Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue & Cell4: 11–14.

    CAS  Google Scholar 

  • Nagai, R. andT. Hayama. 1979. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming inChara internodal cells. J. Cell Sci.36: 121–136.

    PubMed  CAS  Google Scholar 

  • —. 1966. Cytoplasmic microfilaments in streamingNitella cells. J. Ultrastruct. Res.14: 571–589.

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel, E.A., L.S. Barak, J.W. Sanger andW.W. Webb. 1981. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming inChara. J. Cell Biol.88: 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Palevitz, B.A., J.F. Ash andP.K. Hepler. 1974. Actin in the green alga,Nitella. Proc. Nat. Acad. Sci. USA71: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • —. 1975. Identification of actinin situ at the ectoplasm-endoplasm interface ofNitella. Microfilament-chloroplast association. J. Cell Biol.65: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Perdue, T.D. andM.V. Parthasarathy. 1985. In siut localization of F-actin in pollen tubes. Eur. J. Cell Biol.39: 13–20.

    Google Scholar 

  • Sellers, J.R., J.A. Spudich andM.P. Sheetz. 1985. Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments. J. Cell Biol.101: 1897–1902.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, M.P., R. Chasan andJ.A. Spudich. 1984. ATP-dependent movement of myosin in vitro: Characterization of a quantitative assay. J. Cell Biol.99: 1867–1871.

    Article  PubMed  CAS  Google Scholar 

  • —. 1983a. Movement of myosin-coated fluorescent beads on actin cablesin vitro. Nature303: 31–35.

    Article  PubMed  CAS  Google Scholar 

  • —. 1983b. Movement of myosin-coated structures on actin cables. Cell Motility3: 485–489.

    Article  PubMed  CAS  Google Scholar 

  • Shimmen, T. 1978. Dependency of cytoplasmic streaming on intracellular ATP and Mg2+ concentrations. Cell Struct. Funct.3: 113–121.

    CAS  Google Scholar 

  • —. 1982. Reconstitution of cytoplasmic streaming inCharaceae. Protoplasma113: 127–131.

    Article  Google Scholar 

  • —. 1984. Active sliding movement of latex beads coated with skeletal muscle myosin onChara actin bundles. Protoplasma121: 132–137.

    Article  CAS  Google Scholar 

  • — and —. 1985. Ca2+ regulation of myosin sliding alongChara actin bundles mediated by native tropomyosin. Proc. Jap. Acad. (B)61: 86–89.

    CAS  Google Scholar 

  • — and —. 1986. Regulation of myosin sliding alongChara actin bundles by native skeletal muscle tropomyosin. Protoplasma132: 129–136.

    Article  CAS  Google Scholar 

  • Spudich, J.A., S.J. Kron andM.P. Sheetz. 1985. Movement of myosin-coated beads on oriented filaments reconstituted from purified actin. Nature315: 584–586.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Gÿrgyi, A.G., E.M. Szentkiralyi andJ. Kendrick-Jones. 1973. The light chains of scallop myosin as regulatory subunits. J. Mol. Biol.74: 179–203.

    Article  Google Scholar 

  • Tazawa, M., M. Kikuyama andT. Shimmen. 1976. Electric characteristics and cytoplasmic streaming of Characeae cell lacking tonoplast. Cell Struct. Funct.1: 165–176.

    Article  CAS  Google Scholar 

  • —. 1968. Cessation of cytoplasmic streaming ofChara internodes during action potential. Plant Cell Physiol.9: 361–368.

    Google Scholar 

  • Tominaga, Y., T. Shimmen andM. Tazawa. 1983. Control of cytoplasmic streaming by extracellular Ca2+ in permeabilizedNitella cells. Protoplasma116: 75–77.

    Article  CAS  Google Scholar 

  • Vale, R.D., T.S. Reese andM.P. Sheetz. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell42: 39–50.

    Article  PubMed  CAS  Google Scholar 

  • —. 1984. Movement of scallop myosin onNitella actin filaments: Regulation by calcium. Proc. Nat. Acad. Sci. USA81: 6775–6778.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R.E. 1974. Actin in the alga,Chara corallina. Nature248: 801–802.

    Article  PubMed  CAS  Google Scholar 

  • —. 1974. cytoplasmic streaming inChara: A cell model activated by ATP and inhibited by cytochalasin B. J. Cell Sci.17: 655–668.

    Google Scholar 

  • —. 1979. Filaments associated with the endoplasmic reticulum in the streaming cytoplasm ofchara corallina. Eur. J. Cell Biol.20: 177–183.

    PubMed  CAS  Google Scholar 

  • —. 1986. Organelle movements along actin filaments and microtubules. Plant Physiol.82: 631–634.

    Article  PubMed  CAS  Google Scholar 

  • —. 1982. Free Ca2+ and cytoplasmic streaming in the algaChara. Nature296: 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, A., N. Ishii, T. Shimmen andK. Takahashi. 1987. Thick filaments isolated from a molluscan smooth muscle show ATPase and sliding activities. Cell Struct. Funct.12: 620.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Recipient of the Botanical Society Award for Young Scientists, 1987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimmen, T. Characean actin bundles as a tool for stydying actomyosin-based motility. Bot. Mag. Tokyo 101, 533–544 (1988). https://doi.org/10.1007/BF02488095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02488095

Key words

Navigation