Skip to main content
Log in

Intracellular transport based on actin polymerization

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In addition to the intracellular transport of particles (cargo) along microtubules, there are in the cell two actin-based transport systems. In the actomyosin system the transport is driven by myosin, which moves the cargo along actin microfilaments. This transport requires the hydrolysis of ATP in the myosin molecule motor domain that induces conformational changes in the molecule resulting in the myosin movement along the actin filament. The other actin-based transport system of the cell does not involve myosin or other motor proteins. This system is based on a unidirectional actin polymerization, which depends on ATP hydrolysis in actin polymers and is initiated by proteins bound to the surface of transported particles. Obligatory components of the actin-based transport are proteins of the WASP/Scar family and a complex of Arp2/3 proteins. Moreover, the actin-based systems often contain dynamin and cortactin. It is known that a system of actin filaments formed on the surface of particles, the so-called “comet-like tail”, is responsible for intracellular movements of pathogenic bacteria, micropinocytotic vesicles, clathrin-coated vesicles, and phagosomes. This movement is reproduced in a cell-free system containing extract of Xenopus oocytes. The formation of a comet-like structure capable of transporting vesicles from the plasma membrane into the cell depth has been studied in detail by high performance electron microscopy combined with electron tomography. A similar mechanism provides the movement of vesicles containing membrane rafts enriched with sphingolipids and cholesterol, changes in position of the nuclear spindle at meiosis, and other processes. This review will consider current ideas about actin polymerization and its regulation by actin-binding proteins and show how these mechanisms are realized in the intracellular actin-based vesicular transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langford, G. M. (1995) Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems, Curr. Opin. Cell Biol., 7, 82–88.

    Article  PubMed  CAS  Google Scholar 

  2. Maravillas-Montero, J., and Santos-Argumedo, L. (2013) The myosin family: unconventional roles of actin-dependent molecular motors in immune cells, J. Leukocyte Biol., 91, 35–45.

    Article  Google Scholar 

  3. Hammer, J. A., 3rd, and Sellers, J. R. (2012) Walking to work: roles for class V myosins as cargo transporters, Nat. Rev. Mol. Cell. Biol., 13, 13–26.

    CAS  Google Scholar 

  4. Mehta, A. D., Rock, R. S., Rief, M., Spudich, J. A., Mooseker, M. S., and Cheney, R. E. (1999) Myosin-V is a processive actin-based motor, Nature, 400, 590–593.

    Article  PubMed  CAS  Google Scholar 

  5. Wollert, T. D., Weiss, G., Gerdes, H.-H., and Kuznetsov, S. A. (2002) Activation of myosin V-based motility and F-actin-dependent network formation of endoplasmic reticulum during mitosis, J. Cell Biol., 150, 571–577.

    Article  Google Scholar 

  6. Kapitein, L. C., van Bergeijk, P., Lipka, J., Keijzer, N., Wulf, P. S., Katrukha, E. A., Akhmanova, A., and Hoogenraad, C. C. (2013) Myosin-V opposes microtubule-based cargo transport and drives directional motility on cortical actin, Curr. Biol., 23, 828–834.

    Article  PubMed  CAS  Google Scholar 

  7. Von Delius, M., and Leigh, D. A. (2011) Walking molecules, Chem. Soc. Rev., 40, 3656–3676.

    Article  Google Scholar 

  8. Van den Berg, R., and Hoogenraad, C. C. (2012) Molecular motors in cargo trafficking and synapse assembly, Adv. Exp. Med. Biol., 970, 173–196.

    Article  PubMed  Google Scholar 

  9. Ali, M. Y., Lu, H., Bookwalter, C. S., Warshaw, D. M., and Trybus, K. M. (2008) Myosin V and kinesin act as tethers to enhance each others’ processivity, Proc. Natl. Acad. Sci. USA, 105, 4691–4696.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Ross, J. L., Ali, M. Y., and Warshaw, D. M. (2008) Cargo transport: molecular motors navigate a complex cytoskeleton, Curr. Opin. Cell Biol., 20, 41–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Schroeder, H. W., III, Mitchell, C., Shuman, H., Holzbaur, E. L., and Goldman, Y. E. (2010) Motor number controls cargo switching at actin-microtubule intersections in vitro, Curr. Biol., 20, 687–696.

    Article  PubMed  CAS  Google Scholar 

  12. Le Clainche, C., and Carlier, M.-F. (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration, Physiol. Rev., 88, 489–513.

    Article  PubMed  Google Scholar 

  13. Schafer, D. A., Weed, S. A., Binns, D., Karginov, A. V., Parsons, J. T., and Cooper, J. A. (2002) Dynamin 2 and cortactin regulate actin assembly and filament organization, Curr. Biol., 12, 1852–1857.

    Article  PubMed  CAS  Google Scholar 

  14. Merrifield, C. J., Moss, S. E., Ballestrem, C., Imhof, B. A., Giese, G., Wunderlich, I., and Almers, W. (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells, Nat. Cell Biol., 1, 72–74.

    Article  PubMed  CAS  Google Scholar 

  15. Orth, J. D., Krueger, E. W., Cao, H., and McNiven, M. A. (2002) The large GTPase dynamin regulates actin comet formation and movement in living cells, Proc. Natl. Acad. Sci. USA, 99, 167–172.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Merrifield, C. J., Feldman, M. E., Wan, L., and Almers, W. (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits, Nature Cell Biol., 4, 691–698.

    Article  PubMed  CAS  Google Scholar 

  17. Taunton, J., Rowning, B. A., Coughlin, M. L., Wu, M., Moon, R. T., Mitchison, T. J., and Larabell, C. A. (2000) Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP, J. Cell. Biol., 148, 519–530.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Rozelle, A. L., Machesky, L. M., Yamamoto, M., Driessens, M. H., Insall, R. H., Roth, M. G., Luby-Phelps, K., Marriott, G., Hall, A., and Yin, H. L. (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft enriched vesicles through WASP-Arp2/3, Curr. Biol., 10, 311–320.

    Article  PubMed  CAS  Google Scholar 

  19. Bezanilla, M., and Wadsworth, P. (2008) Spindle positioning: actin mediates pushing and pulling, Curr. Biol., 19, R168–R169.

    Article  Google Scholar 

  20. Fabritius, A. S., Ellefson, M. L., and McNally, J. (2011) Nuclear and spindle positioning during oocyte meiosis, Curr. Opin. Cell Biol., 23, 78–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Li, R., and Albertini, D. F. (2013) The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte, Nat. Rev. Mol. Cell. Biol., 14, 141–152.

    Article  PubMed  CAS  Google Scholar 

  22. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., and Holmes, K. C. (1990) Atomic structure of the actin-DNase I complex, Nature, 347, 37–44.

    Article  PubMed  CAS  Google Scholar 

  23. Hanson, J., and Lowy, J. (1963) The structure of F-actin and of actin filaments isolated from muscle, J. Mol. Biol., 6, 46–60.

    Article  CAS  Google Scholar 

  24. Dominguez, R., and Holmes, K. C. (2011) Actin structure and function, Annu. Rev. Biophys., 40, 169–186.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Woodrum, D. T., Rich, S. A., and Pollard, T. D. (1975) Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method, J. Cell Biol., 67, 231–237.

    Article  PubMed  CAS  Google Scholar 

  26. Schuler, H. (2001) ATPase activity and conformational changes in the regulation of actin, Biochim. Biophys. Acta, 1549, 137–147.

    Article  PubMed  CAS  Google Scholar 

  27. Pollard, T. D., and Borisy, G. G. (2003) Cellular motility driven by assembly and disassembly of actin filaments, Cell, 112, 453–465.

    Article  PubMed  CAS  Google Scholar 

  28. Pantaloni, D., Le Clainche, C., and Carlier, M.-F. (2001) Mechanism of actin-based motility, Science, 292, 1502–1506.

    Article  PubMed  CAS  Google Scholar 

  29. Chhabra, E. S., and Higgs, H. N. (2007) The many faces of actin: matching assembly factors with cellular structures, Nat. Cell Biol., 9, 1110–1121.

    Article  PubMed  CAS  Google Scholar 

  30. Domingues, R. (2009) Actin filament nucleation and elongation factors — structure-function relationships, Crit. Rev. Biochem. Mol. Biol., 44, 351–366.

    Article  Google Scholar 

  31. Mullins, R. D., Heuser, J. A., and Pollard, T. D. (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments, Proc. Natl. Acad. Sci. USA, 95, 6181–6186.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Svitkina, T. M., Verkhovsky, A. B., and Borisy, G. G. (1995) Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells, J. Struct. Biol., 115, 290–303.

    Article  PubMed  CAS  Google Scholar 

  33. Cossart, P., and Sansonetti, P. J. (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, 304, 242–248.

    Article  PubMed  CAS  Google Scholar 

  34. Theriot, J. A., Mitchison, T. J., Tilney, L. G., and Portnoy, D. A. (1992) The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization, Nature, 357, 257–260.

    Article  PubMed  CAS  Google Scholar 

  35. Tilney, L. G., Connelly, P. S., and Portnoy, D. A. (1990) Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes, J. Cell Biol., 111, 2979–2988.

    Article  PubMed  CAS  Google Scholar 

  36. Mounier, J., Ryter, A., Coquis-Rondon, M., and Sansonetti, P. J. (1989) Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocyte-like cell line Caco-2, Infect. Immun., 58, 1048–1058.

    Google Scholar 

  37. Gouin, E., Gantelet, H., Egile, C., Lasa, I., Ohayon, H., Villiers, V., Gounon, P., Sansonetti, P. J., and Cossart, P. (1999) A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii, J. Cell Sci., 112, 1697–1708.

    PubMed  CAS  Google Scholar 

  38. Gouin, E., Welch, M. D., and Cossart, P. (2005) Actin-based motility of intracellular pathogens, Curr. Opin. Microbiol., 8, 35–45.

    Article  PubMed  CAS  Google Scholar 

  39. Pistor, S., Chakraborty, T., Niebuhr, K., Domann, E., and Wehland, J. (1994) The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton, EMBO J., 13, 758–763.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Kocks, C., Marchand, J. B., Gouin, E., d’Hauteville, H., Sansonetti, P. J., Carlier, M. F., and Cossart, P. (1995) The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli, respectively, Mol. Microbiol., 18, 413–423.

    Article  PubMed  CAS  Google Scholar 

  41. Bernardini, M. L., Mounier, J., Hauteville, H. L., Coquis-Ronton, M., and Sansonetti, P. J. (1989) Identification of IcsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin, Proc. Nat. Acad. Sci. USA, 86, 3867–3871.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Smith, G. A., Portnoy, D. A., and Theriot, J. A. (1995) Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility, Mol. Microbiol., 17, 945–951.

    Article  PubMed  CAS  Google Scholar 

  43. Goldberg, M. B., Barzu, O., Parsot, C., and Sansonetti, P. J. (1993) Unipolar localization and ATPase activity of Ics A, a Shigella flexneri protein involved in intracellular movement, J. Bacteriol., 175, 2189–2196.

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Campellone, K. G., and Welch, M. D. (2010) A nucleator arms race: cellular control of actin assembly, Nat. Rev. Mol. Cell Biol., 11, 237–251.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Suzuki, T., Miki, H., Takenawa, T., and Sasakawa, C. (1998) Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri, EMBO J., 17, 2767–2776.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Egile, C., Loisel, T. P., Laurent, V., Pantaloni, D., Sansonetti, P. J., and Carlier, M.-F. (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility, J. Cell Biol., 146, 1319–1322.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Mogilner, A., and Oster, G. (1996) Cell motility driven by actin polymerization, Biophys. J., 71, 3030–3045.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Loisel, T. P., Boujemaa, R., Pantaloni, D., and Carlier, M. F. (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins, Nature, 401, 613–616.

    Article  PubMed  CAS  Google Scholar 

  49. Machesky, L. M., and Cooper, J. A. (1999) Bare bones of the cytoskeleton, Nature, 401, 542–543.

    Article  PubMed  CAS  Google Scholar 

  50. Bravo-Cordero, J. J., Magalhaes, M. A., Eddy, R. J., Hodgson, L., and Condeelis, J. (2013) Functions of cofilin in cell locomotion and invasion, Nat. Rev. Mol. Cell. Biol., 14, 405–415.

    Article  PubMed  CAS  Google Scholar 

  51. Krishnan, K., and Moens, P. D. J. (2009) Structure and functions of profilins, Biophys. Rev., 1, 71–81.

    Article  CAS  Google Scholar 

  52. Borisi, G. G., and Svitkina, T. M. (2000) Actin machinery: pushing the envelope, Curr. Opin. Cell Biol., 12, 104–112.

    Article  Google Scholar 

  53. Svitkina, T. (2013) Ultrastructure of protrusive actin filament arrays, Curr. Opin. Cell Biol., 25, 574–581.

    Article  PubMed  CAS  Google Scholar 

  54. Taunton, J. (2001) Actin filament nucleation by endosomes, lysosomes and secretory vesicles, Curr. Opin. Cell Biol., 13, 85–91.

    Article  PubMed  CAS  Google Scholar 

  55. Kaksonen, M., Peng, H. B., and Rauvala, H. (2000) Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles, J. Cell Sci., 113, 4421–4426.

    PubMed  CAS  Google Scholar 

  56. Zhang, F., Southwick, F. S., and Purich, D. L. (2002) Actin-based phagosome motility, Cell Motil. Cytoskeleton, 53, 81–88.

    Article  PubMed  Google Scholar 

  57. Southwick, F. S., Li, W., Zhang, F., Zeile, W. L., and Purich, D. L. (2003) Actin-based endosome and phagosome rocketing in macrophages: activation by the secretagogue antagonists lanthanum and zinc, Cell Motil. Cytoskeleton, 54, 41–55.

    Article  PubMed  CAS  Google Scholar 

  58. Pelkmans, L., Puntener, D., and Helenius, A. (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae, Science, 296, 535–539.

    Article  PubMed  CAS  Google Scholar 

  59. Schafer, D. A., D’Souza-Schorey, C., and Cooper, J. A. (2000) Actin assembly at membranes controlled by ARF6, Traffic, 1, 892–903.

    Article  PubMed  CAS  Google Scholar 

  60. Boldogh, I. R., Yang, H.-C., Nowakowski, W. D., Karmon, S. L., Hays, L. G., Yates III, J. R., and Pon, L. A. (2001) Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast, Proc. Natl. Acad. Sci. USA, 98, 63162–63167.

    Article  Google Scholar 

  61. Bazinet, C., and Rollins, J. E. (2003) Rickettsia-like mitochondrial motility in Drosophila spermiogenesis, Evol. Dev., 5, 379–385.

    Article  PubMed  Google Scholar 

  62. Merrifield, C. J. (2004) Seeing is believing: imaging actin dynamics at single sites of endocytosis, Trends Cell Biol., 14, 352–358.

    Article  PubMed  CAS  Google Scholar 

  63. Merrifield, C. J., Perrais, D., and Zenisek, D. (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells, Cell, 121, 593–606.

    Article  PubMed  CAS  Google Scholar 

  64. Collins, A., Warrington, A., Taylor, K. A., and Svitkina, T. (2011) Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis, Curr. Biol., 21, 1167–1175.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Schmid, S. L., and Frolov, V. A. (2011) Dynamin: functional design of a membrane fission catalyst, Annu. Rev. Cell. Dev. Biol., 27, 79–105.

    Article  PubMed  CAS  Google Scholar 

  66. Ferguson, S. M., and De Camilli, P. (2012) Dynamin, a membrane-remodeling GTPase, Nat. Rev. Mol. Cell Biol., 13, 75–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Menon, M., and Schafer, D. A. (2013) Dynamin: expanding its scope to the cytoskeleton, Int. Rev. Cell. Mol. Biol., 302, 187–219.

    Article  PubMed  CAS  Google Scholar 

  68. Conner, S. D., and Schmid, S. L. (2003) Regulated portals of entry into the cell, Nature, 422, 37–44.

    Article  PubMed  CAS  Google Scholar 

  69. Yarar, D., Waterman-Storer, C. M., and Schmid, S. L. A. (2005) Dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis, Mol. Biol. Cell, 16, 964–975.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Lee, E., and De Camilli, P. (2002) Dynamin at actin tails, Proc. Natl. Acad. Sci. USA, 99, 161–166.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Daly, R. J. (2004) Cortactin signaling and dynamic actin networks, Biochem. J., 382, 13–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Hartig, S. M., Ishikura, S., Hicklen, R. S., Feng, Y., Blanchard, E. G., Voelker, K. A., Pichot, C. S., Grange, R. W., Raphael, R. M., Klip, A., and Corey, S. J. (2009) The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2, J. Cell Sci., 122, 2283–2291.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Gu, C., Yaddanapudi, S., Weins, A., Osborn, T., Reiser, J., Pollak, M., Hartwig, J., and Sever, S. (2010) Direct dynamin-actin interactions regulate the actin cytoskeleton, EMBO J., 29, 3593–3606.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Taylor, M. J., Lampe, M., and Merrifield, C. J. (2012) A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis, PLoS Biol., 10, e1001302.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Miller, L., Phillips, M., and Reisler, E. (1988) Polymerization of G-actin by myosin subfragment 1, J. Biol. Chem., 263, 1996–2002.

    PubMed  CAS  Google Scholar 

  76. Wawro, B., Khaitlina, S. Yu., Galinska-Rakoczy, A., and Strzelecka-Golaszewska, H. (2005) Role of DNase-I-binding loop in myosin subfragment 1-induced actin polymerization. Implications to the polymerization mechanism, Biophys. J., 88, 2883–2896.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Cheng, J., Grassart, A., and Drubin, D. G. (2012) Myosin 1E coordinated actin assembly and cargo trafficking during clathrin-mediated endocytosis, Mol. Biol. Cell, 23, 2891–2904.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Egea, G., Lazaro-Dieguez, F., and Vilella, M. (2006) Actin dynamics at the Golgi complex in mammalian cells, Curr. Opin. Cell Biol., 18, 168–178.

    Article  PubMed  CAS  Google Scholar 

  79. Mooren, O. L., Galletta, B. J., and Cooper, J. A. (2012) Roles for actin assembly in endocytosis, Annu. Rev. Biochem., 81, 661–686.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Khaitlina.

Additional information

Original Russian Text © S. Yu. Khaitlina, 2014, published in Biokhimiya, 2014, Vol. 79, No. 9, pp. 1135–1147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaitlina, S.Y. Intracellular transport based on actin polymerization. Biochemistry Moscow 79, 917–927 (2014). https://doi.org/10.1134/S0006297914090089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914090089

Key words

Navigation