Skip to main content
Log in

Electron transport in wurtzite InN

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Using ensemble Monte Carlo simulation technique, we have calculated the transport properties of InN such as the drift velocity, the drift mobility, the average electron, energy relaxation times and momentum relaxation times at high electric field. The scattering mechanisms included scattering mechanisms are polar optical phonon, ionized impurity, acoustic phonon and intervalley phonon. It is found that the maximum peak velocity only occurs when the electric field is increased to a value above a certain critical field. This critical field is strongly dependent on InN parameters. The steady-state transport parameters are in fair agreement with other recent calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Morkoç, Nitride semiconductors and devices (Springer, New York, 1999)

    Book  Google Scholar 

  2. V Y Davydov et al, Phys. Status Solidi B230, R4 (2002)

    Article  ADS  Google Scholar 

  3. J Wu et al, Appl. Phys. Lett. 80, 3967 (2002)

    Article  ADS  Google Scholar 

  4. J Wu et al, Phys. Rev. B66, 201403 (2002)

    ADS  Google Scholar 

  5. T Matsuoka, H Okamoto, M Nakao, H Harima and E Kurimoto, Appl. Phys. Lett. 81, 1246 (2002)

    Article  ADS  Google Scholar 

  6. T Inushima, V Mamutin, V Vekshin, S Ivanov, T Sakon, M Motokawa and S Ohoya, J. Crystal Growth 227/228, 481 (2001)

    Article  Google Scholar 

  7. T Tansley and C Foley, J. Appl. Phys. 59, 3241 (1986)

    Article  ADS  Google Scholar 

  8. Semiconductors: Data handbook edited by O Madelung (Springer, Berlin, 2004)

  9. S K O’Leary, B E Foutz, M S Shur, U V Bhapkar and L F Eastman, J. Appl. Phys. 83, 826 (1998)

    Article  ADS  Google Scholar 

  10. E Bellotti, B K Doshi, K F Brennan, J D Albrecht and P P Ruden, J. Appl. Phys. 85, 916 (1999)

    Article  ADS  Google Scholar 

  11. B E Foutz, S K O’Leary, M S Shur and L F Eastman, J. Appl. Phys. 85, 7727 (1999)

    Article  ADS  Google Scholar 

  12. C Bulutay and B K Ridley, Superlattices Microstruct. 36, 465 (2004)

    Article  ADS  Google Scholar 

  13. V M Polyakov, F Schwierz, D Fritsch and H Schmidt, Phys. Status Solidi C3, 598 (2006)

    ADS  Google Scholar 

  14. V M Polyakova and F Schwierz, J. Appl. Phys. Lett. 88, 032101 (2006)

    Article  Google Scholar 

  15. V M Polyakova and F Schwierz, J. Appl. Phys. 99, 113705 (2006)

    Article  ADS  Google Scholar 

  16. D Fritsch, H Schmidt and M Grundmann, Phys. Rev. B69, 165204 (2004)

    ADS  Google Scholar 

  17. W Fawcett, A D Boardman and S Swain, J. Phys. Chem. Sol. 31, 1963 (1970)

    Article  ADS  Google Scholar 

  18. C Jacoboni and L Reggiani, Rev. Mod. Phys. 55(3), 645 (1983)

    Article  ADS  Google Scholar 

  19. The Monte Carlo method for semiconductor device simulation edited by Carlo Jacoboni and Paolo Lugli (Springer-Verlag/Wien, 1989)

  20. F M Abou El-Ela, Monte Carlo study of transport in GaAs, Ph.D. Thesis (Essex University, England, 1989)

  21. H Brooks and C Herring, Phys. Rev. 83, 879 (1951)

    Google Scholar 

  22. E Conwell and V P Weisskopf, Phys. Rev. 77, 388 (1950)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F M ABOU EL-ELA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

EL-ELA, F.M.A., EL-ASSY, B.M. Electron transport in wurtzite InN. Pramana - J Phys 79, 125–136 (2012). https://doi.org/10.1007/s12043-012-0294-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0294-5

Keywords

PACS No.

Navigation