Skip to main content
Log in

A tutorial on the NEGF method for electron transport in devices and defective materials

  • Topical Review - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A tutorial on non-equilibrium Green’s function theory and its applications on nanoscale devices is presented. A stepwise tutorial presentation, starting from the concept of Green’s function to its application on nanoscale FETs is presented in this work. The mathematical implementation of the retarded and advanced Green’s function on the device channel is shown in detail. Also, the partitioning of Green’s function into a source Green’s function, a drain Green’s function, and a device channel Green’s function are shown. The construction of the Hamiltonian matrix by applying a non-interacting tight-binding methodology is shown for device channels with rectangular cross sections and line defects. Mathematical expressions for the transmission function and the terminal currents are obtained. Finally, a brief explanation of the concept of scattering contacts and the NEGF mode space extension is presented. This work is useful for understanding the application of Green’s function on nanoscale devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

There is no associated data for this work. All the detailed derivations are presented in the manuscript.

References

  1. P.C. Martin, J. Schwinger, Theory of many particle systems I. Phys. Rev. 115, 1342 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  2. J. Schwinger, Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  3. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1961)

    MATH  Google Scholar 

  4. L.V. Keldysh, Diagram technique for nonequilibrium processes. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  5. C.P. Enz, A course on Many-Body Theory Applied to Solid State Physics (World Scientific Publishing, Singapore, 1992), p.76

    Google Scholar 

  6. H. Haug, in Quantum Transport in Ultrasmall Devices, ed. by D.K. Ferry, H.L. Grubin, C. Jacoboni, A.-P. Jauho (Plenum Press, New York, 1995)

  7. T. Kuhn, F. Rossi, Monte Carlo simulation of ultrafast processes in photoexcited semiconductors: coherent and incoherent dynamics. Phys. Rev. B 46, 7496 (1992)

    ADS  Google Scholar 

  8. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2004)

    Google Scholar 

  9. G. Klimeck, T. Boykin, Tight-Binding Models, Their Applications to Device Modeling, and Deployment to a Global Community (Springer Handbook of Semiconductor Devices, 2023), pp. 1601–1604, Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_45

  10. M. Buttiker, Scattering theory of thermal and excess noise in open conductors. Phys. Rev. Lett. 65, 2901 (1990)

    ADS  Google Scholar 

  11. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 32, 306 (1988)

    Google Scholar 

  12. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  13. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  14. D.K. Ferry, S.M. Goodnick, J. Bird, Transport in Nanostructures (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  15. M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling, and Simulation (Springer, Berlin, 2006)

    Google Scholar 

  16. J. Guo, M. Lundstrom, Carbon Nanotube Electronics, ed. by A. Javey, J. Kong (Springer, Berlin, 2007)

  17. A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343 (2002)

    ADS  Google Scholar 

  18. A. Martinez, M. Bescond, J.R. Barker, A. Svizhenko, M.P. Anantram, C. Millar, A. Asenov, A self-consistent full 3-D real-space NEGF simulator for studying nonperturbative effects in nano-MOSFETs. IEEE Trans. Electron Devices 54(9), 2213 (2007)

    ADS  Google Scholar 

  19. S. Datta, The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction, in Digest. International Electron Devices Meeting, pp. 703–706 (2002). https://doi.org/10.1109/IEDM.2002.1175935

  20. R. Venugopal, Z. Ren, S. Datta, M.S. Lundstrom, Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92, 3730 (2002)

    ADS  Google Scholar 

  21. G. Fiori, G. Iannaccone, Modeling of ballistic nanoscale metal-oxide-semiconductor field effect transistor. Appl. Phys. Lett. 81, 3672 (2002)

    ADS  Google Scholar 

  22. M. Lundstrom, Z. Ren, S. Datta, Essential physics of carrier transport in nanoscale MOSFETs, in International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502) (2000), pp. 1–5, Seattle, WA, USA, Publisher IEEE. https://doi.org/10.1109/SISPAD.2000.871193

  23. J. Guo, M.S. Lundstrom, A computational study of thin-body, double-gate, Schottky barrier MOSFETs. IEEE Trans. Electron Devices 49(11), 1849 (2002)

    Google Scholar 

  24. D. Mamaluy, M. Sabathil, P. Vogl, Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93, 4628 (2003)

    ADS  Google Scholar 

  25. D.K. Ferry, J. Weinbub, M. Nedjalkov, S. Selberherr, A review of quantum transport in field-effect transistors. Semicond. Sci. Technol. 37, 043001 (2022)

    ADS  Google Scholar 

  26. T. Kloss, J. Weston, B. Gaury, B. Rossignol, C. Groth, X. Waintal, TKWANT: a software package for time-dependent quantum transport. New J. Phys. 23, 023025 (2021)

    ADS  MathSciNet  Google Scholar 

  27. M. Ridley, N.W. Talarico, D. Karlsson, N. Lo Gullo, R. Tuovinen, A many-body approach to transport in quantum systems: from the transient regime to the stationary state. J. Phys. A: Math. Theor. 55, 273001 (2021)

    MathSciNet  MATH  Google Scholar 

  28. V. Spicka, B. Velicky, A. Kalvov, Relation between full NEGF, non-Markovian and Markovian transport equations. Eur. Phys. J. Spec. Top. 230, 771 (2021)

    Google Scholar 

  29. M. Pourfath, The Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation (Springer, Wien, 2014)

    Google Scholar 

  30. A. Afzalian, T. Vasen, P. Ramvall, T.-M. Shen, J. Wu, M. Passlack, Physics and performances of III–V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations. J. Phys.: Condens. Matter 30, 254002 (2018)

    ADS  Google Scholar 

  31. V.-N. Do, Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 033001 (2014)

    ADS  Google Scholar 

  32. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists (Academic Press, Elsevier Inc. 2005)

    MATH  Google Scholar 

  33. S. Datta, Lessons from Nanoelectronics a New Perspective on Transport-Part A: Basic Concepts (World Scientific Publishing, Singapore, 2017)

    Google Scholar 

  34. S. Datta, Lessons from Nanoelectronics a New Perspective on Transport-Part B: Quantum Transport (World Scientific Publishing, Singapore, 2017)

    Google Scholar 

  35. S. Pratap, N. Sarkar, Application of the density matrix formalism for obtaining the channel density of a dual gate nano-scale ultra thin MOSFET and its comparison with the semi-classical approach. Int. J. Nanosci. 19(6), 2050010 (2020)

    Google Scholar 

  36. A. Sundar, N. Sarkar, Effect of size quantization and quantum capacitance on the threshold voltage of a 2-D nanoscale dual gate MOSFET. Eng. Res. Express 2, 035029 (2020)

    ADS  Google Scholar 

  37. S. Datta, Nano-scale modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253 (2000)

    ADS  Google Scholar 

  38. M.P. Anantram, M.S. Lundstrom, D.E. Nikonov, Modeling of nanoscale devices. Proc. IEEE 96(9), 1511 (2008)

    Google Scholar 

  39. Q. Memon, U.F. Ahmed, M.M. Ahmed, A Schrödinger–Poisson model for output characteristics of trigate ballistic Si fin field effect transistors (FinFETs). Int. J. Numer. Model 35, e2927 (2021). https://doi.org/10.1002/jnm.2927

    Article  Google Scholar 

  40. A. Gupta, N. Sarkar, An investigation of the role of line defects on the transport properties of armchair graphene nanoribbons. Appl. Phys. A 128, 434 (2022)

    ADS  Google Scholar 

  41. N. Sarkar, Understanding the overall shape of the output characteristics from the change in the channel potential profile for nanowire FET. Superlattice Microstruct. 101, 191 (2017)

    ADS  Google Scholar 

  42. K.L. Wong, M.W. Chuan, A. Hamzah, S. Rusli, N.E. Alias, S.M. Sultan, C.S. Lim, M.L.P. Tan, Performance metrics of current transport in pristine graphene nanoribbon field-effect transistors using recursive non-equilibrium Green’s function approach. Superlattice Microstruct. 145, 106624 (2020)

    Google Scholar 

  43. A. Asenov, A.R. Brown, G. Roy, B. Cheng, C. Alexander, C. Riddet, U. Kovac, A. Martinez, N. Seoane, S. Roy, Simulation of statistical variability in nano-CMOS transistors using drift-diffusion, Monte Carlo and non-equilibrium Green’s function techniques. J Comput Electron 8, 349 (2009)

    Google Scholar 

  44. K.S. Cariappa, N. Sarkar, Investigation of the role of defects on channel density profiles and their effect on the output characteristics of a nanowire FET. Eng. Res. Express 3, 045061 (2021)

    ADS  Google Scholar 

  45. 2012 NCN@Purdue Summer School: electronics from the bottom up (2012). https://nanohub.org/resources/14775. Accessed 19 July 2012

  46. N. Sarkar, Study of dephasing mechanisms on the potential profile of a nanowire FET. Eng. Res. Express 1, 025029 (2019)

    ADS  Google Scholar 

  47. N. Sarkar, Understanding the effect of inelastic electron-phonon scattering and channel inhomogeneities on a nanowire FET. Superlattice Microstruct. 114, 183 (2018)

    ADS  Google Scholar 

  48. N. Seoane, D. Nagy, G. Indalecio, G. Espiñeira, K. Kalna, A. García-Loureiro, A multi-method simulation toolbox to study performance and variability of nanowire FETs. Materials 12(15), 2391 (2019)

    ADS  Google Scholar 

  49. D. Vasileska, S.M. Goodnick, G. Klimeck, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation (CRC Press, Boca Raton, 2010)

    Google Scholar 

  50. A. Martinez, K. Kalna, J.R. Barker, A. Asenov, A study of the interface roughness effect in Si nanowires using a full 3D NEGF approach. Physica E 37, 168 (2007)

    ADS  Google Scholar 

  51. J.R. Barker, A. Martinez, A. Svizhenko, A. Anantram, A. Asenov, Green function study of quantum transport in ultra-small devices with embedded atomistic clusters. J. Phys: Conf. Ser. 35, 233 (2006)

    ADS  Google Scholar 

  52. A. Martinez, A. Svizhenko, M.P. Anantram, J.R. Barker, A. Asenov, A NEGF study of the effect of surface roughness on CMOS nanotransistors. J. Phys.: Conf. Ser. 35, 269 (2006)

    ADS  Google Scholar 

  53. A. Martinez, N. Seoane, A.R. Brown, J.R. Barker, A. Asenov, 3-D nonequilibrium Green’s function simulation of nonperturbative scattering from discrete dopants in the source and drain of a silicon nanowire transistor. IEEE Trans. Nanotechnol. 8(5), 603 (2009)

    ADS  Google Scholar 

  54. L. Deuschle, R. Rhyner, M. Frey, M. Luisier, Non-parabolic effective mass model for dissipative quantum transport simulations of III–V nano-devices. J. Appl. Phys. 132, 095701 (2022)

    ADS  Google Scholar 

  55. N.M. Akhavan, G.A. Umana-Membreno, G. Renjie, J. Antoszewski, L. Faraone, S. Cristoloveanu, Electron mobility distribution in FD-SOI MOSFETs using a NEGF-Poisson approach. Solid State Electron. 193, 108283 (2022)

    Google Scholar 

  56. A. Svizhenko, M.P. Anantram, Role of scattering in nanotransistors. IEEE Trans. Electron Devices 50(6), 1459 (2003)

    ADS  Google Scholar 

  57. M.A. Pourghaderi, A.-T. Pham, H.-H. Park, S. Jin, K. Vuttivorakulchai, Y. Park, U. Kwon, W. Choi, D.S. Kim, Critical backscattering length in nanotransistors. IEEE Electron Device Lett. 43(2), 180 (2022)

    ADS  Google Scholar 

  58. M. Bescond, E. Dib, C. Li, H. Mera, N. Cavassilas, F. Michelini, M. Lannoo, One-shot current conserving approach of phonon scattering treatment in nano-transistors, in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2013), pp. 412–415, Glasgow, UK, Publisher IEEE, https://doi.org/10.1109/SISPAD.2013.6650662

  59. N.D. Akhavan, I. Ferain, R. Yu, P. Razavi, J.-P. Colinge, Emission and absorption of optical phonons in multigate silicon nanowire MOSFETs. J. Comput. Electron. 11, 249 (2012)

    Google Scholar 

  60. H. Ryu, S. Lee, B. Weber, S. Mahapatra, C.L. Hollenberg Lloyd, M.Y. Simmons, G. Klimecke, Atomistic modeling of metallic nanowires in silicon. Nanoscale 5, 8666 (2018)

    ADS  Google Scholar 

  61. S.O. Koswatta, S. Hassan, M. Lundstrom, M.P. Anantram, D.E. Nikonov, Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron. Dev. 54(9), 2339 (2007)

    ADS  Google Scholar 

  62. S. Foster, M. Thesberg, N. Neophytou, Thermoelectric power factor of nanocomposite materials from two-dimensional quantum transport simulations. Phys. Rev. B 96, 195425 (2017)

    ADS  Google Scholar 

  63. V. Vargiamidis, N. Neophytou, Hierarchical nanostructuring approaches for thermoelectric materials with high power factors. Phys. Rev. B 99, 045405 (2019)

    ADS  Google Scholar 

  64. J. Lee, M. Lamarche, V.P. Georgiev, The first-principle simulation study on the specific grain boundary resistivity in copper interconnects, in IEEE 13th Nanotechnology Materials and Devices Conference (NMDC) Portland, USA (2018)

  65. J.P. Mendez, F. Arca, J. Ramos, M. Ortiz, M.P. Ariza, Charge carrier transport across grain boundaries in graphene. Acta Mater. 154, 199 (2018)

    ADS  Google Scholar 

  66. S.M. Rossnagel, T.S. Kuan, Alternation of Cu conductivity in the size effect regime. J. Vac. Sci. Technol. B 22, 240 (2004)

    Google Scholar 

  67. W. Wu, S.H. Brongersma, M. Van Hove, K. Maex, Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl. Phy. Lett. 84(15), 2838 (2004)

    ADS  Google Scholar 

  68. W. Steinhgl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706 (2005)

    ADS  Google Scholar 

  69. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the DST-SERB (Grant no. CRG/2018/001663) given to NS by Govt. of India. Also, AT acknowledges BITS-Pilani, for the research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AT has done all the calculations for the Green’s functions, and the terminal currents. NS made all the figures, constructed the matrices, and wrote the manuscript.

Corresponding author

Correspondence to Niladri Sarkar.

Appendices

Appendix A: Evaluation of retarded and advanced Green’s function

The differential equation with an impulse excitation at the origin can be given as,

$$ \left( {\frac{{{\text{d}}^{2} }}{{{\text{d}}z^{2} }} + k^{2} } \right)G\left( z \right) = \delta \left( z \right). $$
(A1)

The equation above Eq. (A1) can be written in the \(k\)-space as

$$ \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^{\infty } {{\text{e}}^{izs} \left( { - s^{2} + k^{2} } \right)} \tilde{g}\left( s \right){\text{d}}s = \frac{1}{2\pi }\int\limits_{ - \infty }^{\infty } {{\text{e}}^{izs} } {\text{d}}s. $$
(A2)

From (A2), \(G\left( z \right)\) can be extracted as

$$ G\left( z \right) = \frac{1}{{\sqrt {2\pi } }}\int\limits_{ - \infty }^{\infty } {\tilde{g}\left( s \right)} {\text{e}}^{izs} {\text{d}}s = \frac{1}{2\pi }\int\limits_{ - \infty }^{\infty } {{\text{d}}s\frac{{{\text{e}}^{izs} }}{{k^{2} - s^{2} }}} . $$
(A3)

From (A3), the expression for Green’s functions, \(G^{{\text{R}}} \left( z \right)\), and \(G^{{\text{A}}} \left( z \right)\) are evaluated as

$$ G^{{\text{R}}} \left( z \right) = - \frac{i}{2k}\exp \left( {ikz} \right) $$
(A4)

and

$$ G^{{\text{A}}} \left( z \right) = + \frac{i}{2k}\exp \left( { - ikz} \right). $$
(A5)

Appendix B: Evaluation of the matrix \(\left[ {G_{{\text{D}}}^{{\text{R}}} } \right]\), \(\left[ {g_{{\text{s}}}^{{\text{R}}} } \right]\), and \(\left[ {g_{{\text{d}}}^{{\text{R}}} } \right]\)

Here, the matrix for \(\left[ {G^{{\text{R}}} } \right]\) is given as

$$ \left[ {G^{{\text{R}}} } \right] = \left[ {\begin{array}{*{20}c} {G_{{\text{s}}} } & {G_{{{\text{sD}}}} } & 0 \\ {G_{{{\text{Ds}}}} } & {G_{{\text{D}}} } & {G_{{{\text{Dd}}}} } \\ 0 & {G_{{{\text{dD}}}} } & {G_{{\text{d}}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {E + i\eta } \right)I - H_{{\text{s}}} } & { - \tau_{{\text{s}}}^{ + } } & 0 \\ { - \tau_{{\text{s}}} } & {EI - H_{{\text{D}}} } & { - \tau_{{\text{d}}} } \\ 0 & { - \tau_{{\text{d}}}^{ + } } & {\left( {E + i\eta } \right)I - H_{{\text{d}}} } \\ \end{array} } \right]^{ - 1} . $$
(B1)

Now, the above matrix equation can be rewritten as

$$ \begin{aligned} & \left[ {\begin{array}{*{20}c} {\left( {E + i\eta } \right)I - H_{{\text{s}}} } & { - \tau_{{\text{s}}}^{ + } } & 0 \\ { - \tau_{{\text{s}}} } & {EI - H_{{\text{D}}} } & { - \tau_{{\text{d}}} } \\ 0 & { - \tau_{{\text{d}}}^{ + } } & {\left( {E + i\eta } \right)I - H_{{\text{d}}} } \\ \end{array} } \right]\\&\left[ {\begin{array}{*{20}c} {G_{{\text{s}}} } & {G_{{{\text{sD}}}} } & 0 \\ {G_{{{\text{Ds}}}} } & {G_{{\text{D}}} } & {G_{{{\text{Dd}}}} } \\ 0 & {G_{{{\text{dD}}}} } & {G_{{\text{d}}} } \\ \end{array} } \right] \\ & \quad = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]. \\ \end{aligned} $$
(B2)

Now, by only taking the source and the device channel as the system in order to understand the procedure and avoid the tedious algebra, the matrix for \(\left[ {G^{{\text{R}}} } \right]\) under this becomes,

$$ \left[ {G^{{\text{R}}} } \right] = \left[ {\begin{array}{*{20}c} {G_{{\text{s}}} } & {G_{{{\text{sD}}}} } \\ {G_{{{\text{Ds}}}} } & {G_{{\text{D}}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\left( {E + i\eta } \right)I - H_{{\text{s}}} } & { - \tau_{{\text{s}}}^{ + } } \\ { - \tau_{{\text{s}}} } & {EI - H_{{\text{D}}} } \\ \end{array} } \right]^{ - 1} $$
(B3)

that can be written as,

$$ \left[ {\begin{array}{*{20}c} {\left( {E + i\eta } \right)I - H_{{\text{s}}} } & { - \tau_{{\text{s}}}^{ + } } \\ { - \tau_{{\text{s}}} } & {EI - H_{{\text{D}}} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {G_{{\text{s}}} } & {G_{{{\text{sD}}}} } \\ {G_{{{\text{Ds}}}} } & {G_{{\text{D}}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right]. $$
(B4)

Now, from (B4),

$$ \left[ {\left( {E + i\eta } \right)I - H_{{\text{s}}} } \right]G_{{{\text{SD}}}} - \tau_{{\text{s}}}^{ + } G_{{\text{D}}} = 0 $$
(B5)
$$ \left[ { - \tau_{{\text{s}}} } \right]G_{{{\text{SD}}}} + \left[ {EI - H_{{\text{D}}} } \right]G_{{\text{D}}} = \left[ I \right]. $$
(B6)

Now, from (B5), \(G_{{{\text{SD}}}}\) becomes,

$$ \begin{aligned} G_{{{\text{SD}}}} & = \left[ {\left( {E + i\eta } \right)I - H_{{\text{s}}} } \right]^{ - 1} \tau_{{\text{s}}}^{ + } G_{{\text{D}}} \\ & = \left[ {g_{{\text{s}}}^{{\text{R}}} } \right]\tau_{{\text{s}}}^{ + } G_{{\text{D}}} . \\ \end{aligned} $$
(B7)

Now, from (B6) and (B7), the retarded Green’s function for the device channel becomes,

$$ \begin{aligned} & \left[ { - \tau_{{\text{s}}} } \right]\left[ {g_{{\text{s}}}^{{\text{R}}} } \right]\left[ {\tau_{{\text{s}}}^{ + } } \right]G_{{\text{D}}} + \left[ {EI - H_{{\text{D}}} } \right]G_{{\text{D}}} = \left[ I \right] \\ & \left[ {EI - H_{{\text{D}}} - \tau_{{\text{s}}} g_{{\text{s}}}^{{\text{R}}} \tau_{{\text{s}}}^{ + } } \right]\left[ {G_{{\text{D}}} } \right] = \left[ I \right] \\ & \left[ {G_{{\text{D}}} } \right] = \left[ {EI - H_{{\text{D}}} - \tau_{{\text{s}}} g_{{\text{s}}}^{{\text{R}}} \tau_{{\text{s}}}^{ + } } \right]^{ - 1} . \\ \end{aligned} $$
(B8)

Now, the above procedure can be generalized for obtaining the retarded Green’s function \(\left[ {G_{{\text{D}}}^{{\text{R}}} } \right]\) for the device with source and drain terminals as

$$ \left[ {G_{{\text{D}}}^{{\text{R}}} } \right] = \left[ {EI - H_{{\text{D}}} - \tau_{{\text{s}}} g_{{\text{s}}}^{{\text{R}}} \tau_{{\text{s}}}^{ + } - \tau_{{\text{d}}} g_{{\text{d}}}^{{\text{R}}} \tau_{{\text{d}}}^{ + } } \right]^{ - 1} . $$
(B9)

Appendix C: Derivation of Eqs. (34) and (35) from Eqs. (36) and (37)

The Schrodinger equation for source/drain contacts when they are not coupled to the device channel can be given as

$$ \left[ {EI - H_{{{\text{s}},{\text{d}}}} } \right]\left| {\Phi_{{{\text{s}},{\text{d}}}} } \right\rangle = 0. $$
(C1)

Here, \(\left[ {H_{{{\text{s}},{\text{d}}}} } \right]\) is the Hamiltonian for the source/drain contacts. Now, Eq. (C1) can be further written as,

$$ \left[ {EI - H_{{{\text{s}},{\text{d}}}} + i\eta } \right]\left| {\Phi_{{{\text{s}},{\text{d}}}} } \right\rangle = \left\{ {S_{{{\text{s}},{\text{d}}}} } \right\}. $$
(C2)

Here, the term \(\left[ {i\eta } \right]\left| {\Phi_{{{\text{s}},{\text{d}}}} } \right\rangle\) represents the extraction of electrons from source/drain contacts and the term \(\left\{ {S_{{{\text{s}},{\text{d}}}} } \right\}\) represents the reinjection of the electrons into the source/drain contacts. Now, from Eqs. (C1) and (C2), Eqs. (36) and (37) are obtained as

$$ \begin{aligned} & \left[ {EI - H_{{\text{s}}} + i\eta } \right]\left| {\Phi_{{\text{s}}} } \right\rangle = \left\{ {S_{{\text{s}}} } \right\} \\ & \left| {\Phi_{{\text{s}}} } \right\rangle = \left[ {EI - H_{{\text{s}}} + i\eta } \right]^{ - 1} \left\{ {S_{{\text{s}}} } \right\} \\ & \left| {\Phi_{{\text{s}}} } \right\rangle = \left[ {g_{{\text{s}}}^{{\text{R}}} } \right]\left\{ {S_{{\text{s}}} } \right\} \\ \end{aligned} $$
(C3)

and

$$ \begin{aligned} & \left[ {EI - H_{{\text{d}}} + i\eta } \right]\left| {\Phi_{{\text{d}}} } \right\rangle = \left\{ {S_{{\text{d}}} } \right\} \\ & \left| {\Phi_{{\text{d}}} } \right\rangle = \left[ {EI - H_{{\text{d}}} + i\eta } \right]^{ - 1} \left\{ {S_{{\text{d}}} } \right\} \\ & \left| {\Phi_{{\text{d}}} } \right\rangle = \left[ {g_{{\text{d}}}^{{\text{R}}} } \right]\left\{ {S_{{\text{d}}} } \right\}. \\ \end{aligned} $$
(C4)

Now, the overall two-terminal system consisting of the source, the drain, and the device channel as shown in Fig. 3 can be represented as a matrix (Eq. 33)

$$ \left[ {\begin{array}{*{20}c} {\left[ {EI - H_{{\text{s}}} + i\eta } \right]} & {\left[ { - \tau_{{\text{s}}}^{ + } } \right]} & {\left[ 0 \right]} \\ {\left[ { - \tau_{{\text{s}}} } \right]} & {\left[ {EI - H_{{\text{D}}} } \right]} & {\left[ { - \tau_{{\text{d}}} } \right]} \\ {\left[ 0 \right]} & {\left[ { - \tau_{{\text{d}}}^{ + } } \right]} & {\left[ {EI - H_{{\text{d}}} + i\eta } \right]} \\ \end{array} } \right]\left( {\begin{array}{*{20}c} {\left| {\Phi_{{\text{s}}} } \right\rangle + \left| {\chi_{{\text{s}}} } \right\rangle } \\ {\left| \psi \right\rangle } \\ {\left| {\Phi_{{\text{d}}} } \right\rangle + \left| {\chi_{{\text{d}}} } \right\rangle } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\left\{ {S_{{\text{s}}} } \right\}} \\ {\left\{ 0 \right\}} \\ {\left\{ {S_{{\text{d}}} } \right\}} \\ \end{array} } \right). $$
(C5)

Now, from Eqs. (C3) and (C5),

$$ \begin{aligned} & \left[ {EI - H_{{\text{s}}} + i\eta } \right]\left| {\Phi_{{\text{s}}} } \right\rangle \\ & \quad + \left[ {EI - H_{{\text{s}}} + i\eta } \right]\left| {\chi_{{\text{s}}} } \right\rangle + \left[ { - \tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle = \left\{ {S_{{\text{s}}} } \right\} \\ & \left[ {EI - H_{{\text{s}}} + i\eta } \right]\left| {\chi_{{\text{s}}} } \right\rangle = \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \\ & \left| {\chi_{{\text{s}}} } \right\rangle = \left[ {EI - H_{{\text{s}}} + i\eta } \right]^{ - 1} \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \\ & \left| {\chi_{{\text{s}}} } \right\rangle = \left[ {g_{{\text{s}}}^{{\text{R}}} } \right]\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle . \\ \end{aligned} $$
(C6)

On similar lines, from Eqs. (C4) and (C5),

$$ \begin{aligned} & \left[ { - \tau_{{\text{d}}}^{ + } } \right]\left| \psi \right\rangle + \left[ {EI - H_{{\text{d}}} + i\eta } \right]\left| {\Phi_{{\text{d}}} } \right\rangle \\ & \quad + \left[ {EI - H_{{\text{d}}} + i\eta } \right]\left| {\chi_{{\text{d}}} } \right\rangle = \left\{ {S_{{\text{d}}} } \right\} \\ & \left[ {EI - H_{{\text{d}}} + i\eta } \right]\left| {\chi_{{\text{d}}} } \right\rangle = \left[ {\tau_{{\text{d}}}^{ + } } \right]\left| \psi \right\rangle \\ & \left| {\chi_{{\text{d}}} } \right\rangle = \left[ {EI - H_{{\text{d}}} + i\eta } \right]^{ - 1} \left[ {\tau_{{\text{d}}}^{ + } } \right]\left| \psi \right\rangle \\ & \left| {\chi_{{\text{d}}} } \right\rangle = \left[ {g_{{\text{d}}}^{{\text{R}}} } \right]\left[ {\tau_{{\text{d}}}^{ + } } \right]\left| \psi \right\rangle . \\ \end{aligned} $$
(C7)

Hence, Eqs. (34) and (35) are obtained from Eqs. (36) and (37).

Appendix D: Evaluation of the terminal currents (part 1)

From Eq. (44) of Sect. 5,

$$ \begin{aligned} & i\hbar \frac{{\text{d}}}{{{\text{d}}t}}\left( {\begin{array}{*{20}c} {\left| {\Phi_{{\text{s}}} } \right\rangle + \left| {\chi_{{\text{s}}} } \right\rangle } \\ {\left| \psi \right\rangle } \\ {\left| {\Phi_{{\text{d}}} } \right\rangle + \left| {\chi_{{\text{d}}} } \right\rangle } \\ \end{array} } \right) = \left[ {\begin{array}{*{20}c} {\left[ {H_{{\text{s}}} - i\eta } \right]} & {\left[ {\tau_{{\text{s}}}^{ + } } \right]} & {\left[ 0 \right]} \\ {\left[ {\tau_{{\text{s}}} } \right]} & {\left[ {H_{{\text{D}}} } \right]} & {\left[ {\tau_{{\text{d}}} } \right]} \\ {\left[ 0 \right]} & {\left[ {\tau_{{\text{d}}}^{ + } } \right]} & {\left[ {H_{{\text{d}}} - i\eta } \right]} \\ \end{array} } \right]\left( {\begin{array}{*{20}c} {\left| {\Phi_{{\text{s}}} } \right\rangle + \left| {\chi_{{\text{s}}} } \right\rangle } \\ {\left| \psi \right\rangle } \\ {\left| {\Phi_{{\text{d}}} } \right\rangle + \left| {\chi_{{\text{d}}} } \right\rangle } \\ \end{array} } \right) \\ & \quad \Rightarrow i\hbar \frac{{{\text{d}}\left( {\left| {\Phi_{{\text{s}}} } \right\rangle + \left| {\chi_{{\text{s}}} } \right\rangle } \right)}}{{{\text{d}}t}} = \left[ {H_{{\text{s}}} - i\eta } \right]\left( {\left| {\Phi_{{\text{s}}} } \right\rangle + \left| {\chi_{{\text{s}}} } \right\rangle } \right) + \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \\ & \quad \Rightarrow i\hbar \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle } \right)}}{{{\text{d}}t}} = \left[ {H_{{\text{s}}} - i\eta } \right]\left( {\left| {\left| {S_{{\text{s}}} } \right\rangle } \right\rangle } \right) + \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle . \\ \end{aligned} $$
(D1)

Now, from (D1),

$$ \begin{aligned} & \Rightarrow i\hbar \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle } \right)}}{{{\text{d}}t}} = \left[ {H_{{\text{s}}} - i\eta } \right]\left( {\left| {S_{{\text{s}}} } \right\rangle } \right) + \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \\ & \Rightarrow - i\hbar \frac{{{\text{d}}\left( {\left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}} = \left( {\left\langle {S_{{\text{s}}} } \right|} \right)\left[ {H_{{\text{s}}} - i\eta } \right]^{ + } + \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]. \\ \end{aligned} $$
(D2)

Now, the time derivative of the term \(\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|\) is given as

$$ \begin{aligned} & \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}} = \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle } \right)}}{{{\text{d}}t}}\left\langle {S_{{\text{s}}} } \right| + \left| {S_{{\text{s}}} } \right\rangle \frac{{{\text{d}}\left( {\left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}} \\ & \quad \Rightarrow i\hbar \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}} = \left( {i\hbar \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle } \right)}}{{{\text{d}}t}}} \right)\left\langle {S_{{\text{s}}} } \right| + \left| {S_{{\text{s}}} } \right\rangle \left( {i\hbar \frac{{{\text{d}}\left( {\left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}}} \right) \\ & \quad \Rightarrow i\hbar \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}} = \left[ {H_{{\text{s}}} - i\eta } \right]\left( {\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right) \\ & \quad \quad + \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {S_{{\text{s}}} } \right| - \left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|\left[ {H_{{\text{s}}} - i\eta } \right]^{ + } \\ & \quad \quad - \left| {S_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right] \\ & \quad \Rightarrow i\hbar \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}} = \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {S_{{\text{s}}} } \right| - \left| {S_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right] \\ & \quad \Rightarrow \frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}} = \frac{{\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {S_{{\text{s}}} } \right|}}{i\hbar } - \frac{{\left| {S_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]}}{i\hbar }. \\ \end{aligned} $$
(D3)

Now, by taking the trace of the time-derivative of the term \(\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|\), the Eq. (D3) becomes

$$ \begin{aligned} & {\text{Trace}}\left[ {\frac{{{\text{d}}\left( {\left| {S_{{\text{s}}} } \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right)}}{{{\text{d}}t}}} \right] = \frac{{{\text{Trace}}\left[ {\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {S_{{\text{s}}} } \right|} \right]}}{i\hbar } \\ & \quad \quad - \frac{{{\text{Trace}}\left[ {\left| {S_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]} \right]}}{i\hbar } \\ & \quad \Rightarrow {\text{Trace}}\left[ {\frac{{{\text{d}}\left( {\left\langle {{S_{{\text{s}}} }} \mathrel{\left | {\vphantom {{S_{{\text{s}}} } {S_{{\text{s}}} }}} \right. \kern-0pt} {{S_{{\text{s}}} }} \right\rangle } \right)}}{{{\text{d}}t}}} \right] \\ & \quad = \frac{{{\text{Trace}}\left[ {\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {\Phi_{{\text{s}}} } \right| + \left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {\chi_{{\text{s}}} } \right|} \right]}}{i\hbar } \\ & \quad \quad - \frac{{{\text{Trace}}\left[ {\left| {\Phi_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right] + \left| {\chi_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]} \right]}}{i\hbar } \\ & \quad \Rightarrow \frac{{{\text{d}}\left( {\left\langle {{S_{{\text{s}}} }} \mathrel{\left | {\vphantom {{S_{{\text{s}}} } {S_{{\text{s}}} }}} \right. \kern-0pt} {{S_{{\text{s}}} }} \right\rangle } \right)}}{{{\text{d}}t}} = \frac{{{\text{Trace}}\left[ {\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {\Phi_{{\text{s}}} } \right|} \right]}}{i\hbar } \\ & \quad \quad + \frac{{{\text{Trace}}\left[ {\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle \left\langle {\chi_{{\text{s}}} } \right|} \right]}}{i\hbar } - \frac{{{\text{Trace}}\left[ {\left| {\Phi_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]} \right]}}{i\hbar } \\ & \quad \quad - \frac{{{\text{Trace}}\left[ {\left| {\chi_{{\text{s}}} } \right\rangle \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]} \right]}}{i\hbar } \\ & \quad \Rightarrow \frac{{{\text{d}}\left( {\left\langle {{S_{{\text{s}}} }} \mathrel{\left | {\vphantom {{S_{{\text{s}}} } {S_{{\text{s}}} }}} \right. \kern-0pt} {{S_{{\text{s}}} }} \right\rangle } \right)}}{{{\text{d}}t}} = \frac{{{\text{Trace}}\left[ {\left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]\left| {\Phi_{{\text{s}}} } \right\rangle } \right]}}{i\hbar } \\ & \quad \quad + \frac{{{\text{Trace}}\left[ {\left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]\left| {\chi_{{\text{s}}} } \right\rangle } \right]}}{i\hbar } - \frac{{{\text{Trace}}\left[ {\left\langle {\Phi_{{\text{s}}} } \right|\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle } \right]}}{i\hbar } \\ & \quad \quad - \frac{{{\text{Trace}}\left[ {\left\langle {\chi_{{\text{s}}} } \right|\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle } \right]}}{i\hbar } \\ & \quad \Rightarrow I_{{\text{s}}} = \frac{{{\text{Trace}}\left[ {\left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]\left| {\Phi_{{\text{s}}} } \right\rangle - \left\langle {\Phi_{{\text{s}}} } \right|\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle } \right]}}{i\hbar } \\ & \quad \quad - \frac{{{\text{Trace}}\left[ {\left\langle {\chi_{{\text{s}}} } \right|\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle - \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]\left| {\chi_{{\text{s}}} } \right\rangle } \right]}}{i\hbar }. \\ \end{aligned} $$
(D4)

Appendix E: Evaluation of the terminal currents (part 2)

Now, the expression of \(I_{{\text{s}}}\) becomes,

$$ \begin{aligned} I_{{\text{s}}} & = \frac{{{\text{Trace}}\left[ {\left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]\left| {\Phi_{{\text{s}}} } \right\rangle - \left\langle {\Phi_{{\text{s}}} } \right|\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle } \right]}}{i\hbar } \\ & \quad - \frac{{{\text{Trace}}\left[ {\left\langle {\chi_{{\text{s}}} } \right|\left[ {\tau_{{\text{s}}}^{ + } } \right]\left| \psi \right\rangle - \left\langle \psi \right|\left[ {\tau_{{\text{s}}} } \right]\left| {\chi_{{\text{s}}} } \right\rangle } \right]}}{i\hbar } \\ & = \frac{{{\text{Trace}}\left[ {\left\{ S \right\}^{ + } G_{{\text{D}}}^{{\text{A}}} \left\{ {S_{{\text{s}}} } \right\} - \left\{ {S_{{\text{s}}} } \right\}^{ + } G_{{\text{D}}}^{{\text{R}}} \left\{ S \right\}} \right]}}{i\hbar } \\ & \quad - \frac{{{\text{Trace}}\left[ {\left\{ \psi \right\}^{ + } \left[ {\tau_{{\text{s}}} } \right]g_{{\text{s}}}^{{\text{A}}} \left[ {\tau_{{\text{s}}}^{ + } } \right]\left\{ \psi \right\} - \left\{ \psi \right\}^{ + } \left[ {\tau_{{\text{s}}} } \right]g_{{\text{s}}}^{{\text{R}}} \left[ {\tau_{{\text{s}}}^{ + } } \right]\left\{ \psi \right\}} \right]}}{i\hbar } \\ & = \frac{{{\text{Trace}}\left[ {\left\{ {S_{{\text{s}}} } \right\}^{ + } G_{{\text{D}}}^{{\text{A}}} \left\{ {S_{{\text{s}}} } \right\} - \left\{ {S_{{\text{s}}} } \right\}^{ + } G_{{\text{D}}}^{{\text{R}}} \left\{ {S_{{\text{s}}} } \right\}} \right]}}{i\hbar } \\ & \quad - \frac{{{\text{Trace}}\left[ {\left\{ \psi \right\}^{ + } \left[ {\tau_{{\text{s}}} } \right]g_{{\text{s}}}^{{\text{A}}} \left[ {\tau_{{\text{s}}}^{ + } } \right]\left\{ \psi \right\} - \left\{ \psi \right\}^{ + } \left[ {\tau_{{\text{s}}} } \right]g_{{\text{s}}}^{{\text{R}}} \left[ {\tau_{{\text{s}}}^{ + } } \right]\left\{ \psi \right\}} \right]}}{i\hbar } \\ & = \frac{{{\text{Trace}}\left[ {S_{{\text{s}}}^{ + } AS_{{\text{s}}} } \right]}}{\hbar } - \frac{{{\text{Trace}}\left[ {\left\{ \psi \right\}^{ + } \Gamma_{{\text{s}}} \left\{ \psi \right\}} \right]}}{\hbar } \\ & = \frac{{{\text{Trace}}\left[ {S_{{\text{s}}} S_{{\text{s}}}^{ + } A} \right]}}{\hbar } - \frac{{{\text{Trace}}\left[ {\Gamma_{{\text{s}}} \left\{ \psi \right\}\left\{ \psi \right\}^{ + } } \right]}}{\hbar } \\ & = \frac{1}{\hbar }\int {\frac{{{\text{d}}E}}{2\pi }} \left( {{\text{Trace}}\left[ {\Gamma_{{\text{s}}} A} \right]f - {\text{Trace}}\left[ {\Gamma_{{\text{s}}} G^{n} } \right]} \right). \\ \end{aligned} $$
(E1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A., Sarkar, N. A tutorial on the NEGF method for electron transport in devices and defective materials. Eur. Phys. J. B 96, 113 (2023). https://doi.org/10.1140/epjb/s10051-023-00580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00580-5

Navigation