Skip to main content
Log in

Expression of Genes Controlling Unsaturated Fatty Acids Biosynthesis and Oil Deposition in Developing Seeds of Sacha Inchi (Plukenetia volubilis L.)

  • Original Article
  • Published:
Lipids

Abstract

Sacha inchi (Plukenetia volubilis L., Euphorbiaceae) seed oil is rich in α-linolenic acid, a kind of n-3 fatty acids with many health benefits. To discover the mechanism underlying α-linolenic acid accumulation in sacha inchi seeds, preliminary research on sacha inchi seed development was carried out from one week after fertilization until maturity, focusing on phenology, oil content, and lipid profiles. The results suggested that the development of sacha inchi seeds from pollination to mature seed could be divided into three periods. In addition, investigations on the effect of temperature on sacha inchi seeds showed that total oil content decreased in the cool season, while unsaturated fatty acid and linolenic acid concentrations increased. In parallel, expression profiles of 17 unsaturated fatty acid related genes were characterized during seed development and the relationships between gene expression and lipid/unsaturated fatty acid accumulation were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALA:

Alpha-linolenic acid (18:3n-3)

DAP:

Days after pollination

DGAT:

Acyl-CoA: diacylglycerol acyltransferase

DW:

Dry weight

FA:

Fatty acid desaturase

FATA:

Acyl-acyl-carrier protein thioesterase A

FFA:

Free fatty acids

FW:

Fresh weight

G3PDH:

Glycerol-3-phosphate dehydrogenase

LNA:

Linoleic acid (18:2n-6)

MBOAT:

Membrane-bound O-acyltransferase

NL:

Neutral lipids

OLA:

Oleic acid (18:1n-9)

PAM:

Palmitic acid (16:0)

PAP:

Phosphatidate phosphatase

PL:

Phospholipids

PLA2 :

Phospholipase A2

PLC:

Phospholipase C

PUFA:

Polyunsaturated fatty acid(s)

SAD:

Stearoyl-acyl-carrier protein desaturase

SFA:

Saturated fatty acid(s)

STA:

Stearic acid (18:0)

TAG:

Triacylglycerol(s)

UI:

Unsaturation index

USFA:

Unsaturated fatty acid(s)

References

  1. Hamaker BR, Valles C, Gilman R, Hardmeier RM, Clark D, Garcia HH, Gonzales AE, Kohlstad I, Castro M, Valdivia R, Rodriguez T, Lescano M (1992) Amino-acid and fatty-acid profiles of the inca peanut (Plukenetia volubilis). Cereal Chem 69:461–463

    CAS  Google Scholar 

  2. Cabral FA, Follegatti-Romero LA, Piantino CR, Grimaldi R (2009) Supercritical CO2 extraction of omega-3 rich oil from sacha inchi (Plukenetia volubilis L.) seeds. J Supercrit Fluid 49:323–329

    Article  Google Scholar 

  3. Cai ZQ, Yang Q, Tang SX, Dao XS (2011) Nutritional evaluation in seeds of a woody oil crop, Plukenetia volubilis Linneo. Acta Nutr Sin 33:193–195

    Article  CAS  Google Scholar 

  4. Gutiérrez LF, Rosada LM, Jiménez Á (2011) Chemical composition of sacha inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas Aceites 62:76–83

    Article  Google Scholar 

  5. Maurer NE, BH S, GP C, LER S (2012) Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chem 134:1173–1180

    Article  PubMed  CAS  Google Scholar 

  6. Guillen MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) Characterization of sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. J Am Oil Chem Soc 80:755–762

    Article  CAS  Google Scholar 

  7. Ursin VM (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J Nutr 133:4271–4274

    PubMed  CAS  Google Scholar 

  8. Simopoulos AP (2000) Human requirement for n-3 polyunsaturated fatty acids. Poultry Sci 79:961–970

    Article  CAS  Google Scholar 

  9. Wijendran V, Hayes KC (2004) Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr 24:597–615

    Article  PubMed  CAS  Google Scholar 

  10. de Lorgeril M, Salen P (2004) Alpha-linolenic acid and coronary heart disease. Nutr Metab Cardiovasc 14:162–169

    Article  Google Scholar 

  11. Ramaprasad TR, Srinivasan K, Baskaran V, Sambaiah K, Lokesh BR (2006) Spray-dried milk supplemented with alpha-linolenic acid or eicosapentaenoic acid and docosahexaenoic acid decreases HMG CoA reductase activity and increases biliary secretion of lipids in rats. Steroids 71:409–415

    Article  PubMed  CAS  Google Scholar 

  12. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  PubMed  CAS  Google Scholar 

  13. Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

    Article  PubMed  CAS  Google Scholar 

  14. Tranbarger TJ, Dussert S, Joet T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Howell Robert W, Collins FI (1957) Factors affecting linolenic and linoleic acid content of soybean oil. Agron J 49:593–597

    Article  CAS  Google Scholar 

  16. Wolf RB, Cavins JF, Kleiman R, Black LT (1982) Effect of temperature on soybean seed constituents––oil, protein, moisture, fatty-acids, amino-acids and sugars. J Am Oil Chem Soc 59:230–232

    Article  CAS  Google Scholar 

  17. Green AG (1986) Effect of temperature during seed maturation on the oil composition of low-linolenic genotypes of flax. Crop Sci 26:961–965

    Article  CAS  Google Scholar 

  18. Fofana B, Cloutier S, Duguid S, Ching J, Rampitsch C (2006) Gene expression of stearoyl-ACP desaturase and Δ12 fatty acid desaturase 2 is modulated during seed development of flax (Linum usitatissimum). Lipids 41:705–712

    Article  PubMed  CAS  Google Scholar 

  19. Wang X, Xu R, Wang R, Liu A (2012) Transcriptome analysis of sacha inchi (Plukenetia volubilis L.) seeds at two developmental stages. BMC Genom 13:716

    Article  Google Scholar 

  20. Cao M, Zou XM, Warren M, Zhu H (2006) Tropical forests of Xishuangbanna, China. Biotropica 38:306–309

    Article  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  22. Fairbairn NJ (1953) A modified anthrone reagent. Chem Ind-London: 86

  23. Xu R, Wang R, Liu A (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenergy 35:1683–1692

    Article  CAS  Google Scholar 

  24. Pomeroy MK, Kramer JKG, Hunt DJ, Keller WA (1991) Fatty-acid changes during development of zygotic and microspore-derived embryos of Brassica napus. Physiol Plantarum 81:447–454

    Article  CAS  Google Scholar 

  25. Pan Q, Li M, Shi YL, Liu H, Speakman JR, Wang DH (2014) Lipidomics reveals mitochondrial membrane remodeling associated with acute thermoregulation in a rodent with a wide thermoneutral zone. lipids. doi:10.1007/s11745-014-3900-0

  26. Chen GQ, Turner C, He X, Nguyen T, McKeon TA, Laudencia-Chingcuanco D (2007) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in castor bean (Ricinus communis L.). Lipids 42:263–274

    Article  PubMed  CAS  Google Scholar 

  27. Herwig R, Poustka AJ, Muller C, Bull C, Lehrach H, O’Brien J (1999) Large-scale clustering of cDNA-fingerprinting data. Genome Res 9:1093–1105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I, Sharan R, Shiloh Y, Elkon R (2005) EXPANDER––an integrative program suite for microarray data analysis. BMC Bioinform 6:232

    Article  Google Scholar 

  29. Greenwood JS, Bewley JD (1982) Seed development in Ricinus communis (Castor Bean).1. Descr Morphol Can J Bot 60:1751–1760

    Article  Google Scholar 

  30. Roberts LM, Lord JM (1981) Protein biosynthetic capacity in the endosperm tissue of ripening castor bean seeds. Planta 152:420–427

    Article  PubMed  CAS  Google Scholar 

  31. Mj H (2004) Control of storage product synthesis in seeds. Curr Opin Plant Biol 7:302–308

    Article  Google Scholar 

  32. Cai TQ (2012) Leaf photosynthesis, growth and seed chemicals of sacha inchi plants cultivated along an altitude gradient. Crop Sci 52:1859–1867

    Article  CAS  Google Scholar 

  33. Oomah BD, Ladet S, Godfrey DV, Liang J, Girard B (2000) Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem 69:187–193

    Article  CAS  Google Scholar 

  34. Dean Dybing C, Don C, Zimmerman JL (1966) Fatty acid accumulation in maturing flaxseeds as influenced by environment. Plant Physiol 41:1465–1470

    Article  Google Scholar 

  35. Howell RW, Cartter JL (1953) Physiological factors affecting composition of soybeans 1 correlation of temperatures during certain portions of the pod filling stage with oil percentage in mature beans. Agron J 45:526–528

    Article  CAS  Google Scholar 

  36. Collins FI, Howell RW (1957) Variability of linolenic and linoleic acids in soybean oil. J Am Oil Chem Soc 34:491–493

    Article  CAS  Google Scholar 

  37. Krober OA, Howell RW (1958) Determination of sulfur in plant materials. J Agr Food Chem 6:591–592

    Article  CAS  Google Scholar 

  38. Canvix DT (1965) The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot 43:63–69

    Article  Google Scholar 

  39. Dybing CD (1965) Oil formation by embryo and endosperm tissues of maturing flax seeds. Plant Physiol S40:R17–R18

    Google Scholar 

  40. Sosulski FW, Gore RF (1964) Effect of photoperiod + temperature on characteristics of flaxseed oil. Can J Plant Sci 44:381–382

    Article  CAS  Google Scholar 

  41. Yermanos DM, Goodin JR (1965) Effect of temperatures during plant development on the fatty acid composition of linseed oil. Agron J 57:453–454

    Article  CAS  Google Scholar 

  42. Horiguchi G, Fuse T, Kawakami N, Kodama H, Iba K (2000) Temperature-dependent translational regulation of the ER omega-3 fatty acid desaturase gene in wheat root tips. Plant J 24:805–813

    Article  PubMed  CAS  Google Scholar 

  43. Wang CT, Xu YN (2010) The 5’ untranslated region of the FAD3 mRNA is required for its translational enhancement at low temperature in arabidopsis roots. Plant Sci 179:234–240

    Article  CAS  Google Scholar 

  44. O’Quin JB, Bourassa L, Zhang DY, Shockey JM, Gidda SK, Fosnot S, Chapman KD, Mullen RT, Dyer JM (2010) Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum-associated degradation pathway. J Biol Chem 285:21781–21796

    Article  PubMed  PubMed Central  Google Scholar 

  45. Browse J, Somerville C (1991) Glycerolipid synthesis––biochemistry and regulation. Annu Rev Plant Phys 42:467–506

    Article  CAS  Google Scholar 

  46. Hugly S, Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low-temperature. Plant Physiol 99:197–202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Miquel M, James D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90:6208–6212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105:601–605

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Kodama H, Horiguchi G, Nishiuchi T, Nishimura M, Iba K (1995) Fatty-acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco-leaves. Plant Physiol 107:1177–1185

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Khodakovskaya M, McAvoy R, Peters J, Wu H, Li Y (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta 223:1090–1100

    Article  PubMed  CAS  Google Scholar 

  51. Craig W, Lenzi P, Scotti N, De Palma M, Saggese P, Carbone V, McGrath Curran N, Magee AM, Medgyesy P, Kavanagh TA, Dix PJ, Grillo S, Cardi T (2008) Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res 17:769–778

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Seed Bank of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, and Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies (XSTRE) for assistance in sample collection and atmospheric temperature observation. We also thank Dr. Hongtao Li from the SW China Germplasm Bank of Wild Species, Kunming Institute of Botany for his assistance in conducting quantitative real-time PCR. This work was financially supported by the Hundreds  of Talents Program from Chinese Academy of Sciences (To AL).

Conflict of interest

We declare that we have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (docx 16.6 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, A. Expression of Genes Controlling Unsaturated Fatty Acids Biosynthesis and Oil Deposition in Developing Seeds of Sacha Inchi (Plukenetia volubilis L.). Lipids 49, 1019–1031 (2014). https://doi.org/10.1007/s11745-014-3938-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3938-z

Keywords

Navigation