Skip to main content
Log in

Transgenic coffee fruits from Coffea arabica genetically modified by bombardment

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The genetic modification of Coffea arabica fruits is an important tool for the investigation of physiological characteristics and functional validation of genes related to coffee bean quality traits. In this work, plants of C. arabica cultivar Catuaí Vermelho were successfully genetically modified by bombardment of embryogenic calli. Calli were obtained from 90% of the leaf explants cultivated in a callogenesis-inducing medium modified with 20 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The resulting calli were bombarded with the pBI426 vector containing a uidA and nptII gene fusion that was driven by the double CaMV35s promoter. Kanamycin-selected embryos were positive for β-glucuronidase (GUS) activity in histochemical assays and for target gene amplification by polymerase chain reaction. Integration of the nptII gene was confirmed by Southern blot and showed a low copy number (one to three) of insertions. Transformed plants showed normal development and settled fruits. GUS expression was assessed in the flower and fruit organs demonstrating the capacity of the double CaMV35s promoter to drive long-term stable expression of uidA in C. arabica fruit tissues. Moreover, we obtained a T1 progeny presenting 3:1 Mendelian segregation of the uidA gene. This investigation is the first to report exogenous gene expression in coffee fruits and transgenic inheritance in C. arabica plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aragão F. J. L.; Barros L. M. G.; Brasileiro A. C. M.; Ribeiro S. G.; Smith F. D.; Sanford J. C.; Faria J. C.; Rech E. L. Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris l.) co-transformed via particle bombardment. Theor Appl Genet 93: 142–150; 1996.

    Article  Google Scholar 

  • Bewley J. D.; Black M. Seeds—physiology of development and germination. Plenum Press, New York; 1994.

    Google Scholar 

  • Datla R. S. S.; Hammerlindl J. K.; Pelcher L. E.; Crosby W. L.; Selvaraj G. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101: 239–246; 1991.

    Article  PubMed  CAS  Google Scholar 

  • De Castro R. D.; Marraccini P. Cytology, biochemistry and molecular changes during coffee fruit development. Braz J Plant Physiol 18: 175–199; 2006.

    Google Scholar 

  • Dentan E. The microscopic structure of coffee bean. In: Clifford M.; Wilson K. (eds) Coffee: botany, biochemistry and production of beans and beverage. Avi Publishing Company, Westport, pp 284–304; 1985.

    Google Scholar 

  • Doyle J. J.; Doyle J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15; 1987.

    Google Scholar 

  • Eira M. T. S.; Amaral da Silva E. A.; de Castro R. D.; Dussert S.; Walters C. J.; Bewley D.; Hilhorst H. W. M. Coffee seed physiology. Braz J Plant Physiol 18: 149–163; 2006.

    Article  CAS  Google Scholar 

  • Etienne H.; Anthony F.; Dussert S.; Fernandez D.; Lashermes P.; Bertrand B. Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cell Dev Biol, Plant 38: 129–138; 2002.

    Article  Google Scholar 

  • Fernandez D.; Santos P.; Agostini C.; Bon M.-C.; Petitot A.-S.; Silva M. C.; Guerra-Guimarães L.; Ribeiro A.; Argout X.; Nicole M. Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix). Mol Plant Pathol 5: 527–536; 2004.

    Article  CAS  Google Scholar 

  • Fernandez-Da Silva R.; Menéndez-Yuffá A. Transient gene expression in secondary somatic embryos from coffee tissues electroporated with the genes gus and bar. Electron J Biotechnol 6: 29–38; 2003.

    Google Scholar 

  • Gao M.; Matsuta N.; Murayama H.; Toyomasu T.; Mitsuhashi W.; Dandekar A. M.; Tao R.; Nishimura K. Gene expression and ethylene production in transgenic pear (Pyrus communis cv. “La France”) with sense or antisense cDNA encoding ACC oxidase. Plant Sci 173: 32–42; 2007.

    Article  CAS  Google Scholar 

  • Hatanaka T.; Choi Y. E.; Kusano T.; Sano H. Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefasciens-mediated transformation. Plant Cell Rep 19: 106–110; 1999.

    Article  CAS  Google Scholar 

  • Honda C.; Moriguchi T. High gus expression in protoplasts isolated from immature peach fruits. Sci Hortic 109: 244–247; 2006.

    Article  CAS  Google Scholar 

  • ICO International Coffee Organization. Global ICO site. http://www.ico.org/. Cited 20 Jun 2009; 2009.

  • Jefferson R. A.; Kavanagh T. A.; Bevan M. W. Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Lacorte C. ß-glucuronidase (GUS). In: Brasileiro A. C. M.; Carneiro V. T. C. (eds) Manual de transformação genética de plantas. Embrapa/SPI, Brasília, pp 127–141; 1998.

    Google Scholar 

  • Leroy T.; Henry A. M.; Royer M.; Altosaar I.; Frutos R.; Duris D.; Philippe R. Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19: 382–389; 2000.

    Article  CAS  Google Scholar 

  • Lin C.; Mueller L.; McCarthy J.; Crouzillat D.; Pétiard V.; Tanksley S. Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 5: 1–17; 2005.

    Google Scholar 

  • Lloyd G.; McCown B. Commercially-feasible micropropagation of mountain laurel, Kalmia latiforia, by use of shoot tip culture. Comb Proc Intl Plant Prop Soc 30: 421–427; 1981.

    Google Scholar 

  • Maghuly F.; Khan M.; Fernandez E.; Druart P.; Watillon B.; Laimer M. Stress regulated expression of the gus-marker gene (uidA) under the control of plant calmodulin and viral 35S promoters in a model fruit tree rootstock: Prunus incisa × serrula. J Biotechnol 135: 105–116; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Maheswaran G.; Pridmore L.; Franz P.; Anderson M. A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26: 773–782; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Moore G. A.; Jacono C. C.; Neidigh J. L.; Lawrence S. D.; Cline K. Agrobacterium mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11: 238–242; 1992.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Ogita S.; Uefuji H.; Morimoto M.; Sano H. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54: 931–941; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Padilla I.; Golis A.; Gentile A.; Damiano C.; Scorza R. Evaluation of transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tissue Organ Cult 84: 309–314; 2006.

    Article  CAS  Google Scholar 

  • Pereira L. F. P.; Galvão R. M.; Kobayashi A. K.; Cação S. M. B.; Vieira L. G. E. Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica l. Braz J Plant Physiol 17: 283–289; 2005.

    Article  CAS  Google Scholar 

  • Ribas A. F.; Kobayashi A. K.; Pereira L. F. P.; Vieira L. G. E. Genetic transformation of Coffea canephora by particle bombardment. Biologia Plantarum 49: 493–497; 2005.

    Article  CAS  Google Scholar 

  • Rosillo A. G.; Acuna J. R.; Gaitan A. L.; de Pena M. Optimised DNA delivery into Coffea arabica suspension culture cells by particle bombardment. Plant Cell Tissue Organ Cult 74: 45–49; 2003.

    Article  CAS  Google Scholar 

  • Salmona J.; Dussert S.; Descroix F.; de Kochko A.; Bertrand B.; Joët T. Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches. Plant Mol Biol 66: 105–124; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J.; Fritsch E. F.; Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York; 1989.

    Google Scholar 

  • Sanford J. C.; Devit M. J.; Russell J. A.; Smith F. D.; Harpending P. R.; Roy M. K.; Johnston S. A. An improved, helium-driven biolistic device. Technique 3: 3–16; 1991.

    CAS  Google Scholar 

  • Spiral J.; Thierry C.; Paillard M.; Pétiard V. Regeneration of plantlets of Coffea canephora pierre (robusta) transformed by Agrobacterium rhizogenes. C R Acad Sci III, Sci Vie 316: 1–6; 1993.

    CAS  Google Scholar 

  • Teixeira JB, Junqueira CS, Pereira AJPC, Mello RIS, Silva APD, Mundim DA. Multiplicação clonal de café (Coffea arabica L.) via embriogênese somática. Embrapa recursos Genéticos e Biotecnologia, Brasília; 2004: 39 pp.

  • Torregrosa L.; Pradal M.; Souquet J.-M.; Rambert M.; Gunata Z.; Tesniere C. Manipulation of VvAdh to investigate its function in grape berry development. Plant Sci 174: 149–155; 2008.

    Article  CAS  Google Scholar 

  • Valencia A.; Bustillo A. E.; Ossa G. E.; Chispeels M. J. Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem Mol Biol 30: 207–213; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Van Boxtel J.; Berthouly M. High frequency somatic embryogenesis from coffee leaves. Plant Cell Tissue Organ Cult 44: 7–17; 1996.

    Article  Google Scholar 

  • Van Boxtel J.; Berthouly M.; Carasco C.; Dufour M.; Eskes A. Transient expression of beta-glucuronidase following biolistic delivery of foreign DNA into coffee tissues. Plant Cell Rep 14: 748–752; 1995.

    Article  Google Scholar 

  • Vieira L. G. E.; Andrade A. C.; Colombo C. A.; Moraes A. A. H.; Metha A.; Oliveira A. C.; Labate C. A.; Marino C. L.; Monteiro-Vitorello C. B.; et al. Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18: 95–108; 2006.

    Google Scholar 

Download references

Acknowledgments

C. arabica seeds were kindly provided by Dr. Antonio A. Pereira from EPAMIG. This research was supported by the “Consórcio Brasileiro de Pesquisa e Desenvolvimento do Café” and Embrapa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika V. S. Albuquerque.

Additional information

Editor: N. J. Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albuquerque, E.V.S., Cunha, W.G., Barbosa, A.E.A.D. et al. Transgenic coffee fruits from Coffea arabica genetically modified by bombardment. In Vitro Cell.Dev.Biol.-Plant 45, 532–539 (2009). https://doi.org/10.1007/s11627-009-9254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9254-2

Keywords

Navigation