Skip to main content
Log in

Evaluation of transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

To determine the optimum conditions for Agrobacterium-mediated gene transfer, peach explants including cotyledons, embryonic axes and hypocotyl slices from non-germinated seeds and epicotyl internode slices from germinating seeds were exposed to Agrobacterium-mediated transformation treatments. The GUS (uidA) marker gene was tested using two different A. tumefaciens strains, three plasmids and four promoters [CaMV35s, (Aocs)3AmasPmas (“super-promoter”), mas-CaMV35s, and CAB]. GFP was tested with six A.␣tumefaciens strains, one plasmid (pLC101) and the doubleCaMV35s (dCaMV35s) promoter. The CaMV35s promoter produced more GUS expression than the CAB promoter. A. tumefaciens strains EHA105 and LBA4404 harboring the same plasmid (pBIN19) differed in their effects on GUS expression suggesting an interaction between A. tumefaciens strain and plasmid. A combination of A. tumefaciens EHA105, plasmid pBIN19 and the CaMV35s promoter produced the highest rates of transformation in peach epicotyl internodes (56.8%), cotyledons (52.7%), leaves (20%), and embryonic axes (46.7%) as evaluated by the percentage of explants expressing GUS 14 days after co-cultivation. GFP expression under the control of the dCaMV35s promoter was highest for internode explants but only reached levels of 18–19%. When GFP-containing plasmid pCL101 was combined with each of five A. tumefaciens strains the highest levels of transformation were 20–21% (internode and cotyledons, respectively). When nine peach genotypes were co-cultivated with A. tumefaciens strain EHA105 and GFP-containing plasmid pCL101 the highest levels of transformation were 26–28% (cotyledons and internodes, respectively). While GFP represents a potentially useful transformation marker that allows the non-destructive evaluation of transformation, rates of GFP transformation under the conditions of this study were low. It will be necessary to optimize expression of this marker gene in peach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

CAB:

chlorophyll a/b binding protein promoter

CaMV35s:

cauliflower mosaic virus promoter

GUS:

beta-glucuronidase

LB:

Luria Broth base

NPTII:

neomycin phosphotransferase

References

  • Aisley PJ, Collins GG, Sedgley M, (2001) Factors affecting Agrobacterium – mediated gene transfer and the selection of transgenic calli in paper shell almond (Prunus dulcis Mill.) J. Hort. Sci Biotechnol. 76: 522–528

    Google Scholar 

  • An G, Watson BD, Stachel S, Gordon MP, Nester EW, (1985) New cloning vehicles for transformation on higher plants EMBO J 4: 277–284

    PubMed  CAS  Google Scholar 

  • Bevan M, (1984) Binary Agrobacterium vectors for plant transformation Nucleic Acid. Res. 12: 8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Carre IA, Kay SA, (1995) Multiple DNA-protein complexes at a circadian-regulated promoter element Plant Cell 7: 2039–2051

    Article  PubMed  CAS  Google Scholar 

  • Chee R, Pool RM, (1982) The effects of growth substances and photoperiod on the development of shoot apices of Vitis cultured in vitro Scientia Hort. 16: 17–27

    Article  CAS  Google Scholar 

  • FAO. (2003) http://faostat.fao.org/faostat/

  • Gentile A, Monticelli S, Damiano C, (2002) Adventitious shoot regeneration in peach [Prunus persica (L) Batsch] Plant Cell Rep. 20: 1011–1016

    Article  CAS  Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Peña L, (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants Theor. Appl. Genet. 99: 350–358

    Article  Google Scholar 

  • Hammerschlag FA, Bauchan G, Scorza R, (1985) Regeneration of peach plants callus derived from immature embryos Theor. Appl. Genet. 70: 248 – 251

    Article  Google Scholar 

  • Hammerschlag FA, Smigocki AC, (1998) Growth and in vitro propagation of peach plants transformed with the shooty mutant strain of Agrobacterium tumefaciens HortScience 33: 897–899

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooykas PJ, Schilperoot RA, (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens TI-plasmid Nature 303: 179–180

    Article  CAS  Google Scholar 

  • Holster M, Silva B, Van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inze D, Engler G, Villarroel R, Van Montagu M, (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58 Plasmid 3: 212–230

    Article  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A, (1993) New Agrobacterium helper plasmid for gene transfer to plants Transgenic Res. 2: 208–218

    Article  CAS  Google Scholar 

  • Jefferson RA, (1987) Assaying chimeric genes in plants: the GUS gene fusion system Plant Mol. Biol. Rep. 5: 387–405

    Article  CAS  Google Scholar 

  • Li Z, Jayasankar S, Gray DJ, (2001) Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera) Plant Sci. 160:877–887

    Article  PubMed  CAS  Google Scholar 

  • Mante S, Scorza R, Cordts JM, (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica and Prunus cerasus Plant Cell Tiss. Org. Cult. 19: 1–11

    Article  CAS  Google Scholar 

  • Mante S, Morgens PH, Scorza R, Cordts JM, Callahan AM, (1991) Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants Bio/Technol. 9:853–857

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F, (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures Physiol. Plant. 15: 473 – 497

    Article  CAS  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB, (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes Plant J. 7: 661–676

    Article  CAS  Google Scholar 

  • Padilla IMG, Webb K, Scorza R, (2003) Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.) Plant Cell Rep. 22: 38–45

    Article  CAS  Google Scholar 

  • Pérez-Clemente R, Pérez-Sanjuán A, García-Férriz L, Beltrán J-P, Cañas LA, 2004. Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker Mol. Breed. 14:419–427

    Article  Google Scholar 

  • Pooler MR, Scorza R, (1995) Regeneration of peach [Prunus persica (L.) Batsch] rootstock cultivars from cotyledons of mature stored seed HortScience 30: 355–356

    Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C, (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation In vitro Cell. Dev. Biol-Plant 40: 1–22

    Article  CAS  Google Scholar 

  • Quoirin M, Lepoivre Ph & Boxus Ph (1977) Un premier bilan de 10 années de recherches sur les cultures de méristèmes et la multiplication in vitro de fruitiers ligneux. In: Compte rendu des recherches 1976–1977. EJ Rapports de synthèse. Station de cultures fruitières et maraîchères, Gembloux (pp 93–117)

  • Scorza R, Cordts JM, Mante S, (1990a) Long-term somatic embryo production and regeneration from embryo-derived peach callus Proc. Intl. Symp. In vitro Cult. Hort. Breed. Acta Hort. 280: 183–190

    Google Scholar 

  • Scorza R, Morgens PH, Cordts JM, Mante S, Callahan AM, (1990b) Agrobacterium-mediated transformation of peach (Prunus persica Batsch) leaf segments, immature embryos, and long-term embryogenic callus In Vitro Cell Dev. Biol. 26: 829–834

    Article  CAS  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan AM, Cordts J, Fuchs M, Dunez J, Gonsalves D, (1994) Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene Plant Cell Rep. 14: 18-22

    Article  CAS  Google Scholar 

  • Smigocki AC, Hammerschlag FA, (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium J. Amer. Soc. Hort. Sci. 116: 1092–1097

    Google Scholar 

  • Stewart CN Jr, (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep. 20: 376–382

    Article  PubMed  CAS  Google Scholar 

  • Tee CS, Marziah M, Tan CS, Abdullah MP, (2003) Evaluation of different promoters driving the GFP reporter gene and selected target tissues for particle bombardment of Dendrobium Sonia 17 Plant Cell Rep. 21: 452–458

    PubMed  CAS  Google Scholar 

  • Ye X, Brown SK, Scorz R, Cordts J, Sanford JC, (1994) Genetic transformation of peach tissues by particle bombardment J. Amer. Soc. Hort. Sci. 119: 367–373

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dennis Gray for providing the GPF constructs, Dr. Carole Bassett for providing the CAB promoter, Dr. Thomas Burr for providing the wild-type Agrobacterium tumefaciens strains, and Kevin Webb and Katie Tabb for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Scorza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, I.M., Golis, A., Gentile, A. et al. Evaluation of transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tiss Organ Cult 84, 309–314 (2006). https://doi.org/10.1007/s11240-005-9039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-005-9039-1

Keywords

Navigation