Skip to main content
Log in

Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Softwood hemicelluloses could potentially be combined with cellulose and used in packaging materials. In the present study, galactoglucomannan (GGM) is adsorbed to wood cellulose nanofibers (CNF) and filtered and dried or hot-pressed to form nanocomposite films. The CNF/GGM fibril diameters are characterized by AFM, and the colloidal behavior by dynamic light scattering. Mechanical properties are measured in uniaxial tension for wet gels, dried films, and hot-pressed films. The role of GGM is particularly important for the wet gels. The wet gels of CNF/GGM exhibit remarkable improvement in mechanical properties. FE-SEM fractography and moisture sorption studies are carried out to interpret the results for hygromechanical properties. The present study shows that GGM may find use as a molecular scale cellulose binding agent, causing little sacrifice in mechanical properties and improving wet strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  Google Scholar 

  2. Kisonen V, Prakobna K, Xu C et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199. doi:10.1007/s10853-015-8882-7

    Article  Google Scholar 

  3. Carpita NC, McCann MC (2000) Chapter 2 “The cell wall”. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, pp 52–108

    Google Scholar 

  4. Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The Biochemistry of Plants. Acedamic Press Inc, New York, pp 297–371

    Chapter  Google Scholar 

  5. Dinwoodie JM (1981) Timber: its nature and behaviour. Van Nostrand Reinhold, New York

    Google Scholar 

  6. Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116

    Article  Google Scholar 

  7. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–659

    Article  Google Scholar 

  8. Sturcova A, Davies GR, Eicchorn S (2006) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  9. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576

    Article  Google Scholar 

  10. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253

    Article  Google Scholar 

  11. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  Google Scholar 

  12. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  Google Scholar 

  13. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 37:815–827

    Google Scholar 

  14. Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031

    Article  Google Scholar 

  15. Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726

    Article  Google Scholar 

  16. Stevanic JS, Mikkonen KS, Xu C, Tenkanen M, Berglund L, Salmen L (2015) Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. J Mater Sci 49:5043–5055. doi:10.1007/s10853-014-8210-7

    Article  Google Scholar 

  17. Prakobna K, Terenzi C, Zhou Q, Furo I, Berglund LA (2015) Core-shell cellulose nanofibers for biocomposites—nanostructural effects in hydrated state. Carbohydr Polym 125:92–102

    Article  Google Scholar 

  18. Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press Inc., San Diego, pp 51–70

    Book  Google Scholar 

  19. Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Cabohydr Polym 52:175–187

    Article  Google Scholar 

  20. Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257

    Article  Google Scholar 

  21. Hartman J, Albertsson AC, Lindblad MS, Sjöberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991

    Article  Google Scholar 

  22. Mikkonen KS, Heikkilä MI, Helen H, Hyvönen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112

    Article  Google Scholar 

  23. Mikkonen KS, Yadav MP, Cooke P, Willför S, Hicks KB, Tenkanen M (2008) Films from spruce galactogluccomannan blended with poly(vinyl alcohol), corn arabonoxylan, and konjac glucomannan. Bioresource 3:178–191

    Google Scholar 

  24. Teeri TT, Brumer H, Daniel G, Gatenholm P (2007) Biomimetic engineering of cellulose-based materials. Trends Biotechnol 25:299–306

    Article  Google Scholar 

  25. Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563

    Article  Google Scholar 

  26. Olszewska A, Valle-Delgado JJ, Nikinmaa M, Laine J, Österberg M (2013) Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. Nanoscale 5:11837–11844

    Article  Google Scholar 

  27. Prakobna K, Galland S, Berglund LA (2015) High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Biomacromolecules 16:904–912

    Article  Google Scholar 

  28. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structure of high toughness. Biomacromolecules 9:1579–1585

    Article  Google Scholar 

  29. Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350

    Article  Google Scholar 

  30. Lucenius J, Parikka K, Österberg M (2014) Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React Funct Polym 85:167–174

    Article  Google Scholar 

  31. Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechnaical properties of primary plant cell walls. Plant Physiol 121:657–663

    Article  Google Scholar 

  32. Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996

    Article  Google Scholar 

  33. Cybulska J, Vanstreels E, Ho QT et al (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96:287–294

    Article  Google Scholar 

  34. Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32

    Google Scholar 

  35. Xu C, Eckerman C, Smeds A, Reunanen M, Eklund PC, Sjöholm R, Willför S (2009) Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydr Polym 75:p498–p504

    Article  Google Scholar 

  36. Michielsen S (1999) Specific refractive index increments of polymers in dilute solution. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley, New York pp, pp 547–627

    Google Scholar 

  37. Sundberg A, Kenneth S, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Paper Res J 11:216–219

    Article  Google Scholar 

  38. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose-inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  Google Scholar 

  39. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644

    Article  Google Scholar 

  40. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Cabohydr Res 307:299–309

    Article  Google Scholar 

  41. Eronen P, Österberg M, Heikkinen S, Tenkanen S, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290

    Article  Google Scholar 

  42. Vincken JP, Keizer AD, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585

    Article  Google Scholar 

  43. Xu C, Eckerman C, Smeds A et al (2011) Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nord Pulp Paper Res J 26:167–178

    Article  Google Scholar 

  44. Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic material in aqueous: a review. BioResources 3:1419–1491

    Google Scholar 

  45. Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338

    Article  Google Scholar 

  46. Fernandes AN, Thomas L, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS Plus 108:E1195–E1203

    Article  Google Scholar 

  47. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/XG networks: ultrastructure and molecular. Plant J 8:491–504

    Article  Google Scholar 

  48. Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712

    Article  Google Scholar 

  49. Nilsson H, Galland S, Larsson PT, Gamstedt EK, Iversen T (2012) Compression molded wood pulp biocomposites: a study of hemicellulose influence on cellulose supramolecular structure and material properties. Cellulose 19:751–760

    Article  Google Scholar 

  50. Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure and property relationships. J Pulp Pap Sci 24:99–103

    Google Scholar 

  51. Kelly A (1970) Interface effects and the work of fracture of a fibrous composite. Proc R Soc Lond A 319:95–116

    Article  Google Scholar 

  52. Brunauer S (1943) The adsorption of gases and vapors-I physical adsorption. Princeton University Press, Princeton

    Google Scholar 

  53. Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39:3059–3064

    Article  Google Scholar 

  54. Luo HL, Lian JJ, Wan YZ, Huang Y, Wang YL, Jiang HJ (2006) Moisture absorption in VARTMed three-dimensional braided carbon-epoxy composites with different interface conditons. Mater Sci Eng A 425:70–77

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Wallenberg Wood Science Center (WWSC) and a scholarship fund from the Siam Cement Group (SCG) are gratefully acknowledged. Extraction and analysis of the GGM component are part of the activities at the Johan Gadolin Process Chemistry Center, a Center of Excellence by Åbo Akademi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars A. Berglund.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakobna, K., Kisonen, V., Xu, C. et al. Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. J Mater Sci 50, 7413–7423 (2015). https://doi.org/10.1007/s10853-015-9299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9299-z

Keywords

Navigation