Skip to main content
Log in

Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

We have employed dual-axis electron tomography to investigate the 3D organization of cellulose microfibrils in plastic resin-embedded, delignified cell walls of radiata pine early wood. The ∼ 1 nm thick tomographic slices produced in this study provided for a resolution of ∼ 2 nm in the cross-section of the slices throughout the 150 nm thick plastic sections. This resolution is sufficient to resolve individual cellulose microfibrils and to map the 3D organization of the cellulose microfibrils within the S2 layer of the secondary cell walls. The individual cellulose microfibrils measure ∼ 3.2 nm in diameter, and appear to consist of a ∼ 2.2 nm unstained core and a ∼ 0.5 nm thick surface layer that is lightly stained. Both individual and clustered cellulose microfibrils are seen surrounded by more heavily stained and irregularly shaped residual lignin and hemicellulose. The tightness of packing of the cellulose microfibrils in the cluster varies along the thickness of the section. These findings demonstrate that dual-axis electron tomography is a technique that can provide new insights into the 3D organization of cellulose microfibrils in plant cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Ohtani J, Fukazawa K (1991) FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bull ns 12:431–438

    Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1992) Microfibrillar orientation of the innermost surface of conifer tracheids walls. IAWA Bull ns 13:411–417

    Google Scholar 

  • Åkerholm M, Salmén L (2002) Dynamic FTIR spectroscopy for carbohydrate analysis of wood pulps. J Pulp Pap Sci 28:245–249

    Google Scholar 

  • Awano T, Takabe K, Fujita M, Daniel G (2000) Deposition of glucuronoxylans on the secondary cell wall of Japanese beech as observed by immuno-scanning electron microscopy. Protoplasma 212:72–79

    Article  CAS  Google Scholar 

  • Bardage S, Donaldson L, Tokoh C, Daniel G (2004) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. Nord Pulp Pap Res J 19:448–452

    CAS  Google Scholar 

  • Blackwell J, Kolpak FJ (1976) Cellulose microfibrils as disordered arrays of elementary fibrils. In: Timell TE (ed) Proceedings of the 8th cellulose conference applied polymer symposium, vol. 28, No. 2. Wiley, New York, pp 751–761

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composite. Van Nostrand Reinhold, New York, p 712

    Google Scholar 

  • Bracewell RN, Riddle AC (1967) Inversion of fan-beam scans in radio astronomy. Astrophys J 150:427–434

    Article  Google Scholar 

  • Cave ID (1968) The anisotropic elasticity in the plant cell wall. Wood Sci Technol 2:268–278

    Article  Google Scholar 

  • Colsher JG (1977) Iterative three-dimensional image reconstruction from tomographic projections. Comput Graph Image Process 6:513–537

    Google Scholar 

  • Donaldson LA (1988) Ultrastructure of wood cellulose substrates during enzymatic hydrolysis. Wood Sci Technol 22:33–41

    Article  CAS  Google Scholar 

  • Duchesne I, Daniel G (1999) The ultrastructure of wood fibre surfaces as shown by a variety of microscopical methods—a review. Nord Pulp Pap Res J 14:129–139

    CAS  Google Scholar 

  • Duchesne I, Hult E-L, Molin U, Daniel G, Iversen T, Lennholm H (2001) The effects of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111

    Article  CAS  Google Scholar 

  • Evans R (1998) Rapid scanning of microfibril angle in increment cores by x-ray diffractometry. In: Butterfield BG (eds) Microfibril angle in wood, proceedings of IAWA/IUFRO international workshop on the significance of microfibril angle to wood quality, Westport, New Zealand, 1997, pp 116–139

  • Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4:339–345

    Article  Google Scholar 

  • Fujino T, Itoh T (1998) Changes in the three-dimensional architecture of the cell wall during lignification of xylem cells in Eucalyptus tereticornis. Holzforschung 52:111–116

    CAS  Google Scholar 

  • Giddings TH, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microtubules in Closterium sp. Planta 173:22–30

    Article  Google Scholar 

  • Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339

    Article  PubMed  Google Scholar 

  • Gilbert PFC (1972) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II: direct methods. Proc R Soc Lond B 182:89–102

    Article  PubMed  CAS  Google Scholar 

  • Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol 29:471–481

    Article  PubMed  CAS  Google Scholar 

  • Ha M, Apperley DC, Evans BW, Jarvis MC (1998) Fine structure in cellulose microfibrils: NMR evidence from onion and quince. Plant J 16:183–190

    Article  CAS  Google Scholar 

  • Hafrén J, Fujino F, Itoh T (1999) Changes in cell wall architecture of differentiating tracheids of Pinus thunbergii during lignification. Plant Cell Physiol 40:532–541

    Google Scholar 

  • Haigler CH (1985) The functions and biogenesis of native cellulose. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Harwood, Chichester, pp 30–83

    Google Scholar 

  • Hanley SJ, Gray DG (1994) Atomic force microscope images of black spruce wood sections and pulp fibres. Holzforschung 48:29–34

    Article  CAS  Google Scholar 

  • Hanley SJ, Gray DG (1999) AFM images in air and water of kraft pulp fibres. J Pulp Pap Sci 25:196–200

    CAS  Google Scholar 

  • Hanna RB (1971) The interpretation of high resolution electron micrographs of the cellulose elementary fibril. J Polym Sci C 36:409–413

    Google Scholar 

  • Harada H (1965) Ultrastructure and organization of gymnosperm cell walls. In: Côté WA (ed) Cellular ultrastructure of woody plants. Syracuse University Press, New York, pp 215–233

    Google Scholar 

  • Hearle JWS (1963) The fine structure of fibres and crystalline polymers, Part III: interpretation of the mechanical properties of fibres. J Appl Polym Sci 7:1207–1223

    Article  CAS  Google Scholar 

  • Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann P, Parameswaran N (1976) On the ultrastructural localisation of hemicelluloses within delignified tracheids of spruce. Holzforschung 30:62–70

    Article  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2001a) Cellulose aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2001b) A CP/MAS 13C-NMR study of the supermolecular changes in the cellulose and hemicellulose structure during kraft pulping. Nord Pulp Pap Res J 16:46–52

    Google Scholar 

  • Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle x-ray scattering, and wide-angle x-ray scattering results. Macromolecules 28:8782–8787

    Article  CAS  Google Scholar 

  • Jaswon MA, Gillis PP, Mark RE (1968) The elastic constants of crystalline native cellulose. Proc R Soc A 306:389–412

    CAS  Google Scholar 

  • Kataoka Y, Saiki H, Fujita M (1992) Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids. Mokuzai Gakkaishi 38:327–335

    CAS  Google Scholar 

  • Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cellulose Chem Technol 9(6):563–573

    Google Scholar 

  • Kimura S, Laosinchai W, Itoh T, Cui X, Linder R, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085

    Article  PubMed  CAS  Google Scholar 

  • Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  PubMed  CAS  Google Scholar 

  • Kroon-Batenburg LMJ, Kroon J, Northolt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibres. Polym Commun 27:290–292

    CAS  Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Luther PK, Lawrence MC, Crowther RA (1988) A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24(1):7–18

    Article  PubMed  CAS  Google Scholar 

  • Marchessault RH, Sundararajan PR (1983) Cellulose. In: Aspinall GO (ed) The polysaccharides, vol. 2. Academic, New York, pp 11–95

  • Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven and London

    Google Scholar 

  • Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    Article  PubMed  CAS  Google Scholar 

  • McEwen BF, Marko M (1999) Three-dimensional electron microscopy and its application to mitosis research. Methods Cell Biol 61:81–111

    Article  PubMed  CAS  Google Scholar 

  • McEwen BF, Marko M (2001) The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J Histochem Cytochem 49(5):553–563

    PubMed  CAS  Google Scholar 

  • Newman RH (1994) Crystalline forms of cellulose in softwoods and hardwoods. J Wood Chem Technol 14:451–466

    CAS  Google Scholar 

  • Newman RH (1998) How stiff is an individual cellulose microfibril? In: Butterfield BG (ed) Proceedings of the IAWA/IUFRO international workshop on microfibril angle in wood, University of Canterbury, pp 81–93

  • Newman RH (1999) Estimation of the relative proportions of cellulose Iα and Iβ in wood by carbon-13 NMR spectroscopy. Holzforschung 53:335–340

    Article  CAS  Google Scholar 

  • Nyholm K, Ander P, Bardage S, Daniel G (2001) Dislocations in pulp fibres—their origin, characteristics and importance—a review. Nord Pulp Pap Res J 16:376–384

    CAS  Google Scholar 

  • Otegui MS, Mastronarde D, Kang B-H, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial type cell plates during endosperm cellularization visualized by high resolution electron microscopy. Plant Cell 13:2033–2051

    Article  PubMed  CAS  Google Scholar 

  • O’Toole ET, Winey M, McIntosh JR (1999) High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10:2017–2031

    PubMed  CAS  Google Scholar 

  • Penczek P, Marko M, Buttle K, Frank J (1995) Double-tilt electron tomography. Ultramicroscopy 60:393–410

    Article  PubMed  CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant walls. Chapman & Hall, London

    Google Scholar 

  • Radermacher M (1992) Weighted back-projection methods. In: Frank J (ed) Electron tomography. Plenum, New York, pp 91–115

    Google Scholar 

  • Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolution instead of Fourier transforms. Proc Natl Acad Sci USA 68:2236–2240

    Article  PubMed  CAS  Google Scholar 

  • Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743

    Article  CAS  Google Scholar 

  • Schniewind AP (1972) Elastic behavior of the wood fiber. In: Jayne BA (ed) Theory and design of wood and fiber composite materials. Syracuse University Press, New York

    Google Scholar 

  • Seguí-Simarro JM, Austin JR, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  PubMed  CAS  Google Scholar 

  • Sell J, Zimmermann T (1993a) Radial fibril agglomerations of the S2 on transverse fracture surfaces of tracheids of tension loaded spruce and white fir. Holz Roh-Werkst 51:384

    Google Scholar 

  • Sell J, Zimmermann T (1993b) The structure of the cell wall layer S2. Field-emission SEM studies on transverse-fracture surfaces of the wood of spruce and white fir. Forschungs- Arbeitsberichte Abteilung Holz 115(28):1–26

    Google Scholar 

  • Sjöström E (1981) Wood chemistry: fundamentals and applications. Academic, Orlando

    Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated cellulose: role of hydrogen bonds. Polymer 32(8):1516–1526

    Article  CAS  Google Scholar 

  • Taylor KA, Reedy MC, Córdova L, Reedy MK (1984) Three-dimensional reconstruction of rigor insect flight muscle from tilted thin sections. Nature 310:285–291

    Article  PubMed  CAS  Google Scholar 

  • Turner JN, Valdrè U (1992) Tilting stages for biological applications. In: Frank J (ed) Electron tomography. Plenum, New York, pp 167–196

    Google Scholar 

  • Wilkins AP (1986) The nomenclature of cell wall deformations. Wood Sci Technol 20:97–109

    Google Scholar 

  • Xu P, Liu H (2004) Models of microfibril elastic modulus parallel to the cell axis. Wood Sci Technol 38(5):363–374

    Article  CAS  Google Scholar 

  • Yamamoto H, Kojima Y (2002) Properties of cell wall constituents in relation to longitudinal elasticity of wood, Part I: formulation of the longitudinal elasticity of an isolated wood fiber. Wood Sci Technol 36:55–74

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. David Mastronarde (Boulder Laboratory for 3-D Electron Microscopy of Cells, University of Colorado, USA) for his suggestions regarding trouble shooting of IMOD softwares and his comments during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Donaldson, L.A., Gergely, Z.R. et al. Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41, 101–116 (2007). https://doi.org/10.1007/s00226-006-0088-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-006-0088-3

Keywords

Navigation