Skip to main content
Log in

Recurrent parent genome recovery in different populations with the introgression of Sub1 gene from a cross between MR219 and Swarna-Sub1

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Recurrent parent genome (RPG) recovery is the most important step of marker assisted backcross breeding. This breeding approach is used to develop new varieties by inserting a particular gene of interest into the background of a modern variety, and removing undesirable segments linked with the target allele, which can survive after many generations of backcrossing. The marker assisted backcrossing technique is the most effective way to minimize the limitation of conventional breeding, and recover the parental genome within 2–3 generations. MR219, A modern rice variety of Malaysia (susceptible to submergence) was crossed with a high-yielding submergence tolerant variety Swarna-Sub1 (donor) to produce a new submergence tolerant rice variety. Foreground selection for the sub1 gene was done using tightly linked markers. Estimation of RPG recovery was conducted in earlier generations with previously screened polymorphic SSR markers. A total of 385 SSR markers were tested to identify the polymorphism between the parents and 88 of them found to be polymorphic. Background analysis revealed 65.55–77.8 and 78.79–95.5 % recovery in BC1F1 and BC2F1 generations, respectively. In the BC2F2 generation the average RPG recovery was 95.37 % and that for the selected plant was 96.3 %. This study revealed the usefulness of marker assisted backcrossing for the quick recovery of a parental genome in a backcrossing population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, Latif MA (2013) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Biomed Res Int 2013:963525. doi:10.1155/2013/963525

    PubMed  CAS  PubMed Central  Google Scholar 

  • Allard RW (1999) Principles of plant breeding, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Basavaraj SH, Singh VK, Singh A, Singh A, Singh A, Anand D, Yadav S, Ellur RK, Singh D, GopalaKrishnan S, Nagarajan M, Mohapatra T, Prabhu KV, Singh AK (2010) Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed 26:293–305

    Article  CAS  Google Scholar 

  • Bhatia D, Sharma R, Vikal Y, Mangat GS, Mahajan R, Sharma N, Lore JS, Singh N, Bharaj TS, Singh K (2011) Marker-assisted development of bacterial blight resistant, dwarf, and high yielding versions of two traditional basmati rice cultivars. Crop Sci 51:759–770

    Article  Google Scholar 

  • Chen S, Lin XH, Xu CG, Zhang Q (2000) Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci 40:239–244. doi:10.2135/cropsci2000.401239x

    Article  Google Scholar 

  • Chen S, Xu CG, Lin XH, Zhang Q (2001) Improving bacterial blight resistance of ‘6078’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed 120:133–137

    Article  CAS  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collard BC, Vera Cruz CM, McNally KL, Virk PS, Mackill DJ (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics 2008:524847. doi:10.1155/2008/524847

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuc LM, Huyen LTN, Hien PTM, Hang VTT, Dam NQ, Mui PT, Quang VD, Ismail AM, Ham LH (2012) Application of marker assisted backcrossing to introgress the submergence tolerance QTL SUB1 into the Vietnam elite rice variety-AS996. Am J Plant Sci 3:528–536

    Article  CAS  Google Scholar 

  • Dey M, Upadhyaya H (1996) Yield loss due to drought, cold and submergence in Asia. In: Evenson RE, Herdt RW, Hossain M (eds) Rice research in Asia: progress and priorities. CAB International, Wallingford, pp 291–303

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Frisch M (2005) Breeding strategies: optimum design of marker-assisted backcross programs. In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Springer, Berlin, pp 319–334

    Chapter  Google Scholar 

  • Frisch M, Melchinger AE (2005) Selection theory for marker-assisted backcrossing. Genetics 170:909–917

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sharma RK, Anand Rajkumar K, Joseph M, Singh VP, Singh AK, Bhat KV, Singh NK, Mohapatra T (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breeding 127:131–139

    Article  CAS  Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Rahim HA, Malek MA, Latif MA (2015) Introgression of blast resistance genes into the elite rice variety MR263 through marker-assisted backcrossing. J Sci Food Agric. doi:10.1002/jsfa.7222

    PubMed  Google Scholar 

  • Herdt RW (1991) Research priorities for rice biotechnology. Rice Biotechnol 6:19–54

    Google Scholar 

  • Hospital F (2001) Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics 158:1363–1379

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing, Oxford, pp 30–59

    Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132:1199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huyen LTN, Cuc LM, Ismail AM, Ham LH (2012a) Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am J Plant Sci 3:981–987

    Article  CAS  Google Scholar 

  • Huyen LTN, Cuc LM, Ismail AM, Ham LH (2012b) Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am J Plant Sci 3. doi:10.4236/ajps.2012.37116

  • Iftekharuddaula KM, Newaz MA, Salam MA, Ahmed HU, Mahbub MAA, Septiningsih EM, Collard BCY, Sanchez DL, Pamplona AM, Mackill DJ (2011) Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83–97

    Article  Google Scholar 

  • IRGSP, International Rice Genome sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol Breed 13:377–387

    Article  CAS  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London

    Book  Google Scholar 

  • Khanh TD, Linh TH, Xuan TD (2013) Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into the Vietnamese elite rice variety. J Plant Breed Crop Sci 5:26–33

    Article  Google Scholar 

  • Lewis RS, Kernodle S (2009) A method for accelerated trait conversion in plant breeding. Theor Appl Genet 118:1499–1508

    Article  PubMed  Google Scholar 

  • Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. Int J Plant Genomics 2012:949038. doi:10.1155/2012/949038

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackill DJ (2006) Breeding for resistance to abiotic stresses in rice: the value of quantitative trait loci. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer International Symposium. Blackwell Publishing Ltd, Oxford, pp 201–212

    Google Scholar 

  • Mackill DJ, Amante MM, Vergara BS, Sarkarung S (1993) Improved semidwarf rice lines with tolerance to submergence of seedlings. Crop Sci 33:749–753

    Article  Google Scholar 

  • Mackill DJ, Coffman WR, Garrity DP (1996) Rainfed lowland rice improvement. Int Rice Res Inst, Manila

    Google Scholar 

  • Mackill DJ, Collard BCY, Neeraja CN, Rodriguez RM, Heuer S, Ismail AM (2007) QTLs in rice breeding: examples for abiotic stresses. In: Brar DS, Mackill DJ, Hardy B (eds) International rice genetics symposium, Manila (Philippines), 19–23 Nov 2005, 2007. International Rice Research Institute (IRRI), pp 155–167

  • Melchinger A (1990) Use of molecular markers in breeding for oligogenic disease resistance. Plant Breed 104:1–19

    Article  Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA (2015) Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (Oryza sativa L.). C R Biol 338:83–94. doi:10.1016/j.crvi.2014.11.003

    Article  PubMed  Google Scholar 

  • Nandi S, Subudhi P, Senadhira D, Manigbas N, Sen-Mandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8

    Article  PubMed  CAS  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  PubMed  CAS  Google Scholar 

  • Prigge V, Maurer HP, Mackill DJ, Melchinger AE, Frisch M (2008) Comparison of the observed with the simulated distributions of the parental genome contribution in two marker-assisted backcross programs in rice. Theor Appl Genet 116:739–744

    Article  PubMed  CAS  Google Scholar 

  • Ribaut J-M, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565

    Article  Google Scholar 

  • Semagn K, Bjørnstad Å, Ndjiondjop M (2006) Progress and prospects of marker assisted backcrossing as a tool in crop breeding programs. Afr J Biotechnol 5:2588–2603

    CAS  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S, Singh D, Gopala Krishnan S, Vinod KK, Singh UD, Rathore R, Prashanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res 128:8–16

    Article  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopala Krishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Singh UD, Mohapatra T, Prabhu KV, Singh AK (2013) Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR78’. Plant Breed 132:486–495

    CAS  Google Scholar 

  • Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Rani NS, Sarma NP, Sonti RV (2008) Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160:411–422

    Article  Google Scholar 

  • Sundaram RM, Vishnupriya MR, Laha GS, Rani NS, Rao PS, Balachandran SM, Reddy GA, Sarma NP, Sonti RV (2009) Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration rice variety. Biotechnol J 4:400–407

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Ebitani T, Yamamoto T, Sato H, Ohta H, Hirabayashi H, Kato H, Ando I, Nemoto H, Imbe T (2006) Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed Sci 56:405–413

    Article  CAS  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    Article  CAS  Google Scholar 

  • Tanksley SD, Young ND, Patersonm AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264

    Article  CAS  Google Scholar 

  • Visscher PM (1996) Proportion of the variation in genetic composition in backcrossing programs explained by genetic markers. J Hered 87:136–138

    Article  Google Scholar 

  • Visscher PM, Haley CS, Thompson R (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Ronald P, Mackill D (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet 263:681–689

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Ye G, Smith KF (2008) Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10

    Article  Google Scholar 

  • Young N, Tanksley S (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101

    Article  PubMed  CAS  Google Scholar 

  • Zhou P, Tan Y, He Y, Xu C, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106:326–331

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Long-term Research Grant Scheme (LRGS), Food Security Project, Ministry of Higher Education, Malaysia, for the financial support on rice breeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Y. Rafii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Rafii, M.Y., Ismail, M.R. et al. Recurrent parent genome recovery in different populations with the introgression of Sub1 gene from a cross between MR219 and Swarna-Sub1 . Euphytica 207, 605–618 (2016). https://doi.org/10.1007/s10681-015-1554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1554-5

Keywords

Navigation