Skip to main content
Log in

Bacterial and archaeal communities in the acid pit lake sediments of a chalcopyrite mine

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Bacterial and archaeal community structures and diversity of three different sedimentary environments (BH1A, BH2A and BH3A) in the acid pit lake of a chalcopyrite mine at Touro (Spain) were determined by 16S rRNA gene PCR-DGGE and sequencing of clone libraries. DGGE of bacterial and archaeal amplicons showed that the sediments harbor different communities. Bacterial 16S rRNA gene sequences were assigned to Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, Proteobacteria, Chloroflexi and uncultured bacteria, after clustering into 42 operational taxonomic units (OTUs). OTU 2 represented approximately 37, 42 and 37 % of all sequences from sediments BH1A, BH2A and BH3A, respectively, and was phylogenetically related to uncultured Chloroflexi. Remaining OTUs were phylogenetically related to heterotrophic bacteria, including representatives of Ferrithrix and Acidobacterium genera. Archaeal 16S rRNA gene sequences were clustered into 54 OTUs. Most of the sequences from the BH1A sediment were assigned to Euryarchaeota, whereas those from BH2A sediment were assigned to Crenarchaeota. The majority of the sequences from BH3A sediment were assigned to unclassified Archaea, and showed similarities to uncultured and unclassified environmental clones. No sequences related to Acidithiobacillus and Leptospirillum, commonly associated with acid mine drainage, were detected in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Álvarez E, Pérez A, Calvo R (1993) Aluminum speciation in surface waters and soils solutions in areas of sulphide mineralization in Galicia (NW Spain). Sci Total Environ 133:17–37

    Article  Google Scholar 

  • Álvarez E, Fernandez-Sanjurjo MJ, Otero XL, Macias F (2010) Aluminum geochemistry in the bulk and rhizospheric soil in the species colonising and abandoned copper mine in Galicia (NW Spain). J Soil Sediment 10:1236–1245

    Article  Google Scholar 

  • Álvarez E, Fernandez-Sanjurjo MJ, Otero XL, Macias F (2011) Aluminum speciation in the bulk and rhizospheric soil solution of the species colonizing and abandoned copper mine in Galicia (NW Spain). J Soil Sediment 11:221–230

    Article  Google Scholar 

  • Auld RR, Myre M, Mykytczuk NC, Leduc LG, Merritt TJ (2013) Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J Microbiol Methods 93:108–115

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  PubMed  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  PubMed  CAS  Google Scholar 

  • Brofft JE, McArthur JV, Shimkets LJ (2002) Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ Microbiol 4:764–769

    Article  PubMed  CAS  Google Scholar 

  • Chao A, Shen TJ (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443

    Article  Google Scholar 

  • Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, Shu WS (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol. doi:10.1111/1462-2920.12114

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje MJ (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II error probabilities. Genome Res 8:186–194

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fowler TA, Holmes PR, Crundwell FK (1999) The mechanism of bacterial leaching of pyrite by Thiobacillus ferrooxidans. Appl Environ Microbiol 65:2987–2993

    PubMed  CAS  Google Scholar 

  • Galán E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metals partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. App Geochem 18:409–421

    Article  Google Scholar 

  • García-Moyano A, González-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acid environment, Río Tinto (SW, Spain). Syst Appl Microbiol 30:601–614

    Article  PubMed  Google Scholar 

  • Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73

    Article  PubMed  CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2003) Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71:139–148

    Article  CAS  Google Scholar 

  • Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030

    Article  PubMed  CAS  Google Scholar 

  • Hao CB, Zhang HX, Bai ZH, Hu Q, Zhang BG (2007) A novel acidophile community populating waste ore deposits at an acid mine drainage site. J Environ Sci 19:444–450

    Article  CAS  Google Scholar 

  • Hao C, Wang L, Gao Y, Zhang L, Dong H (2010) Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Extremophiles 14:465–474

    Article  PubMed  Google Scholar 

  • He Z, Xiao S, Xie X, Zhong H, Hu Y, Li Q, Gao F, Li G, Liu J, Qiu G (2007) Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine. Extremophiles 11:305–314

    Article  PubMed  CAS  Google Scholar 

  • Huminicki DMC, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. App Geochem 24:1626–1634

    Article  CAS  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853

    Article  CAS  Google Scholar 

  • Johnson DB, Okibe N, Roberto FF (2003) Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Oh HM, Kang H, Chun J (2005) Archaeal diversity in tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol 43:144–151

    PubMed  CAS  Google Scholar 

  • Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Current Microbiol 22:1–7

    Article  CAS  Google Scholar 

  • Klatt CG, Liu Z, Ludwig M, Kühl M, Jensen SI, Bryant DA, Ward DM (2013) Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J. doi:10.1038

    PubMed  Google Scholar 

  • Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050

    Article  PubMed  CAS  Google Scholar 

  • Leclerc MC, Haddad N, Moreau R, Thorel MF (2000) Molecular characterization of environmental mycobacterium strains by PCR-restriction fragment length polymorphism of hsp65 and by sequencing of hsp65, and of 16S and ITS1 rDNA. Res Microbiol 151:629–638

    Article  PubMed  CAS  Google Scholar 

  • Lee S (2006) Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea. Geoderma 135:26–37

    Article  CAS  Google Scholar 

  • Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941

    Article  PubMed  CAS  Google Scholar 

  • Macías F, Calvo de Anta R (2009) Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia. Xunta de Galicia. http://solos.medioambiente.xunta.es/solos/documents/librongr.pdf. Accessed 23 March 2013

  • MeteoGalicia (2013) Consellería de Medio Ambiente, Territorio e Infraestruturas—Xunta de Galicia. http://www2.meteogalicia.es/galego/observacion/estacions/estacionsHistorico.asp?Nest=10124&prov=A%20Coru%F1a&red=102. Accessed 29 May 2013

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nancucheo I, Barrie Johnson D (2012) Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Front Microbiol 3:1–8

    Article  Google Scholar 

  • Nieto JM, Sarmiento AM, Olías M, Canovas CR, Riba I, Kalman J, Delvalls TA (2007) Acid mine drainage pollution in the Tinto and Odiel Rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva estuary. Environ Int 33:445–455

    Article  PubMed  Google Scholar 

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JS, Fanning, DS, Hosser, LR (eds) Acid sulphate weathering. SSSA Special Publication Lumber 10, Soil Science Society of America, Madison, pp 37–55

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon, MJ (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques, and health issues. The Society of Economic Geologists, Littleton, pp 133–160

  • Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H, Stadnitskaia A, Foucher JP, Boetius A (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74:3198–3215

    Article  PubMed  CAS  Google Scholar 

  • Otero XL, Alvarez E, Fernandez-Sanjurjo MJ, Macias F (2012) Micronutrients and toxic trace metals in the bulk and rhizospheric soil of the spontaneous vegetation at an abandoned copper mine in Galicia (NW Spain). J Geochem Explor 112:84–92

    Article  CAS  Google Scholar 

  • Otero XL, Huerta-Díaz MA, De La Peñas S, Ferreira TO (2013) Sand as a relevant fraction in geochemical studies in intertidal environments. Environ Monit Assess. doi:10.1007/s10661-013-3146-y

  • Romero FM, Armienta MA, Gónzalez-Hernández G (2007) Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. App Geochem 18:109–127

    Article  Google Scholar 

  • Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093

    Article  PubMed  Google Scholar 

  • Sánchez-España J, López E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356

    Article  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  PubMed  CAS  Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:1519–1522

    Article  PubMed  CAS  Google Scholar 

  • Senko JM, Wanjugi P, Lucas M, Bruns MA, Burgos WD (2008) Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. ISME J 2:1134–1145

    Article  PubMed  CAS  Google Scholar 

  • Silverman MP, Ehrlich HL (1964) Microbial formation and degradation of minerals. In: Umbreit WW (ed) Advances in applied microbiology. Academic Press, London, pp 153–206

    Google Scholar 

  • Souza-Egipsy V, González-Toril E, Zettler E, Amaral-Zettler L, Aguilera A, Amils R (2008) Prokaryotic community structure in algal photosynthetic biofilms from extreme acidic streams in Río Tinto (Huelva, Spain). Int Microbiol 11:251–260

    PubMed  CAS  Google Scholar 

  • Stucki JW (1981) The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenantroline. II. A photochemical method. Soil Sci Soc Am J 45:638–641

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 5:844–855

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Sekiguchi Y (2009) Cultivation of uncultured Chloroflexi Subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘Subphylum I’ with natural and biotechnological relevance. Microbes Environ 24:205–216

    Article  PubMed  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Cao L, Xie M, Chen Q, Qiu G, Zhou J, Wu L, Wang D, Liu X (2008) Bacterial diversity based on 16S rRNA and gyrB genes at Yinshan mine, China. Syst Appl Microbiol 31:302–311

    Article  PubMed  CAS  Google Scholar 

  • Ying JY, Zhang LM, He JZ (2010) Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. Environ Microbiol Rep 2:304–312

    Article  PubMed  CAS  Google Scholar 

  • Zarzycki J, Brecht V, Müller M, Fuchsa G (2009) Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci USA 106:21317–21322

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Shi W, Yang MX, Sha T, Zhao ZW (2007) Bacterial diversity at different depths in lead-zinc mine tailings as revealed by 16S rRNA gene libraries. J Microbiol 45:479–484

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Lambais.

Additional information

Communicated by M. da Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2013_576_MOESM1_ESM.jpg

Online Resource 1 Details of the pit lake of the Touro mine collecting the AMD and sediment characteristics. Samples: BH1A. BH2A. BH3A (jpg 995 kb)

792_2013_576_MOESM2_ESM.tif

Online Resource 2 Rarefaction curves representing the estimated number of bacterial (a) and archaeal (b) OTUs as a function of the sequence effort, considering a cut-off evolutionary distance of 0.03. Bars represent 95 % confidence intervals (TIFF 17820 kb)

792_2013_576_MOESM3_ESM.pdf

Online Resource 3 List of sequences comprising each bacterial and archaeal OTU from sediments BH1A, BH2A and BH3A. A cut-off evolutionary distance of 0.03 was used to define OTU (PDF 407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucheta, A.R., Otero, X.L., Macías, F. et al. Bacterial and archaeal communities in the acid pit lake sediments of a chalcopyrite mine. Extremophiles 17, 941–951 (2013). https://doi.org/10.1007/s00792-013-0576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0576-y

Keywords

Navigation