Skip to main content
Log in

Prokaryotic Diversity in the Biotopes of the Gudzhirganskoe Saline Lake (Barguzin Valley, Russia)

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The hydrochemical water composition and the mineralogical composition of microbial mats and bottom sediments were determined for the ephemeral saline soda lake Gudzhirganskoe (Barguzin Valley, Baikal Rift zone). Analysis of the 16S rRNA gene amplicons was applied to investigation of microbial diversity in several biotopes: brine (1 sample), sediments (3), and microbial mats (3). During sampling in October 2017, the lake was almost dry, with the residual brine (salinity 100 g/dm3) occurring occasionally, and microbial formations at two sampling points existing as dry crusts. A total of 38636 nucleotide sequences were analyzed and assigned to 193 OTUs. Bacteria predominated in all biotopes, while archaea constituted 0.013 to 4.5%. The biotopes exhibited differences in their taxonomic composition. Members of the Gammaproteobacteria (36.5%), Bacteroidetes (25.4%), and Alphaproteobacteria (18.3%) were predominant in the brine. The Gammaproteobacteria predominated (52%) in the dense dry crust (Gudzh 1-mat), while Cyanobacteria constituted only 3.4%. In the dry crust (Gudzh 2-mat), the Gammaproteobacteria also were the main component of the community (80%), primarily members of the genus Aliidiomarina (68%). In the bottom microbial mat below the residual brine, the community contained mainly Gammaproteobacteria (37.4%) and Cyanobacteria (27.8%). Firmicutes prevailed in the bottom sediments (30‒32%), while Actinobacteria (14.56%) and DeinococcusThermus (15.4%) were subdominant at sampling point 1. These data made it possible to assess the present state of the lake and the taxonomic diversity of microbial communities in Lake Gudzhirganskoe biotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Banciu, H.L., Sorokin, D.Y., Tourova, T.P., Galinski, E.A., Muntyan, M.S., Kuenen, J.G., and Muyzer, G., Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes, Extremophiles, 2008, vol. 12, pp. 391‒404. https://doi.org/10.1007/s00792-008-0142-1

    Article  CAS  PubMed  Google Scholar 

  2. Boldareva, E.N., Akimov, V.N., Boychenko, V.A., Stadnichuk, I.N., Moskalenko, A.A., Makhneva, Z.K., and Gorlenko, V.M., Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia), Microbiology (Moscow), 2008, vol. 77, pp. 206‒218.

    Article  CAS  Google Scholar 

  3. Boltyanskaya, Yu.V., Haloalkaliphilic denitrifying bacteria of the genus Halomonas from soda lakes, Tr. Inst. Mikrobiol., vol. 14, Alkaliphilic Microbial Communities, Gal’chenko, V.F., Ed.,, 2007, pp. 276–298.

  4. Brouchkov, A., Kabilov, M., Filippova, S., Baturina, O., Rogov, V., Galchenko, V., Mulyukin, A., Fursova, O., and Pogorelko, G., Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia), Gene, 2017, vol. 636, pp. 48‒53. https://doi.org/10.1016/j.gene.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  5. Chiu, H.-H., Rogozin, D.Y., Huang, S.-P., Degermendzhy, A.G., Shieh, W.Y., and Tang, S.-L., Aliidiomarina shirensis sp. nov., a halophilic bacterium isolated from Shira Lake in Khakasia, southern Siberia, and a proposal to transfer Idiomarina maris to the genus Aliidiomarina,Int. J. Syst. Evol. Microbiol., 2014, vol. 64, pp. 1334‒1339.

    Article  CAS  Google Scholar 

  6. Edgar, R.C., SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences, bioRxiv preprint, 2016, pp. 1‒20. https://doi.org/10.1101/074161

  7. Edgar, R.C., UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 2013, vol. 10, pp. 996–998.

    Article  CAS  Google Scholar 

  8. Edwardson, C.F. and Hollibaugh, J.T., Composition and activity of microbial communities along the redox gradient of an alkaline, hypersaline, lake, Front. Microbiol., 2018, vol. 9, art. 14, pp. 1‒18. https://doi.org/10.3389/fmicb.2018.00014

  9. Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J., An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform, Microbiome, 2014, vol. 2, art. 6, pp. 1‒7. https://doi.org/10.1186/2049-2618-2-6

  10. Farooqui, S.M., Wright, M.H., and Greene, A.C., Aliidiomarina minuta sp. nov., a haloalkaliphilic bacterium that forms ultra-small cells under non-optimal conditions, Antonie van Leeuwenhoek, 2016, vol. 109, pp. 83‒93.

    Article  CAS  Google Scholar 

  11. Genderjahn, S., Alawi, M., Mangelsdorf, K., Horn, F., and Wagner, D., Desiccation- and saline-tolerant bacteria and archaea in Kalahari pan sediments, Front. Microbiol., 2018, vol. 9, art. 2082, pp. 1‒15. https://doi.org/10.3389/fmicb.2018.02082

  12. Gorlenko, V.M., Anoxygenic phototrophic bacteria from soda lakes, Tr. Inst. Mikrobiol., vol. 14, Alkaliphilic Microbial Communities, Gal’chenko, V.F., Ed., 2007, pp. 225–257.

  13. Kaye, J.Z., Carmen Ma’rquez, M., Ventosa, A., and Baross, J.A., Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 499‒511.

    Article  CAS  Google Scholar 

  14. Keshri, J., Basit, Y., Avinash, M., and Bhavanath, J., The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea, Microbiol. Res., 2015, vol. 175, pp. 57‒66. https://doi.org/10.1016/j.micres.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  15. Makhalanyane, T.P., Valverde, A., Lacap, D.C., Pointing, S.B., Tuffin, M.I., and Cowan, D.A., Evidence of species recruitment and development of hot desert hypolithic communities, Environ. Microbiol. Rep., 2013, vol. 5, pp. 219–224. https://doi.org/10.1111/1758-2229.12003

    Article  PubMed  Google Scholar 

  16. Mazzullo, S.J., Overview of porosity evolution in carbonate reservoirs, Kansas Geol. Surv. Bull., 2004, vol. 79, pp. 22‒29.

    Google Scholar 

  17. Naghoni, A., Emtiazi, G., Amoozegar, M.A., Cretoiu, M.S., Stal, L.J., Etemadifar, Z., Fazeli, S.A.S., and Bolhuis, H., Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci. Rep., 2017, vol. 7, art. 11522, pp. 1‒13. https://doi.org/10.1038/s41598-017-11585-3

  18. Namsaraev, B.B., Zaitseva, S.V., Khakhinov, V.V., Imetkhenov, A.B., Rinchino, S.Kh., and Maksanova, L.B.-Zh., Mineral’nye istochniki i ozera Barguzinskoi doliny (Mineral Springs and Lakes of the Barguzin Valley), Ulan-Ude: Buryat. Gos. Univ., 2007.

  19. Plyusnin, A.M., Khazheeva, Z.I., Sanzhanova, S.S., Peryazeva, E.G., and Angakhaeva, N.A., Sulfate mineral lakes of Western Transbaikalia: formation conditions, chemical composition of the water and bottom sediments, Geol. Geophys., 2020, in press.

  20. Sorokin, D.Y., Banciu, H., and Muyzer, G., Functional microbiology of soda lakes, Curr. Opin. Microbiol., 2015, vol. 25, pp. 88‒96.

    Article  CAS  Google Scholar 

  21. Sorokin, D.Y., Van Pelt, S., Tourova, T.P., and Evtushenko, L.I., Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 248‒253.

    Article  CAS  Google Scholar 

  22. Valenzuela-Encinas, C., Neria-González, I., Alcántara-Hernández, R.J., Estrada-Alvarado, I., Zavala-Díaz de la Serna, F.J., Dendooven, L., and Marsch, R., Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding, Extremophiles, 2009, vol. 13, pp. 609‒621. https://doi.org/10.1007/s00792-009-0244-4

    Article  PubMed  Google Scholar 

  23. Van Horn, D.J., Okie, J.G., Buelow, H.N., Gooseff, M.N., Barrett, J.E., and Takacs-Vesbach, C.D., Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert, Appl. Environ. Microbiol., 2014, vol. 80, pp. 3034‒3043. https://doi.org/10.1128/AEM.03414-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vavourakis, C.D., Andrei, A., Mehrshad, M., Ghai, R., Sorokin, D.Y., and Muyzer, G., A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments, Microbiome, 2018, vol. 6, art. 168, pp. 1‒18. https://doi.org/10.1186/s40168-018-0548-7

  25. Vavourakis, C.D., Ghai, R., Rodriguez-Valera, F., Sorokin, D.Y., Tringe, S.G., and Muyzer, G., Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines, Front. Microbiol., 2016, vol. 7, art. 211, pp. 1‒18. https://doi.org/10.3389/fmicb.2016.00211

  26. Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R., Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 2007, vol. 73, pp. 5261‒5267.

    Article  CAS  Google Scholar 

  27. Wang, Y.-N., Cai, H., Chi, C.-Q., Lu, A.-H., Lin, X.-G., Jiang, Z.-F., and Wu, X.-L., Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 1222‒1226. https://doi.org/10.1099/ijs.0.64973-0

    Article  CAS  PubMed  Google Scholar 

  28. Xia, J., Xie, Z.H., Dunlap, C.A., Rooney, A.P., and Du, Z.J., Rhodohalobacter halophilus gen. nov., sp. nov., a moderately halophilic member of the family Balneolaceae,Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1281–1287.

    Article  CAS  Google Scholar 

  29. Xu, Y., Wang, Z.X., Xue, Y., Zhou, P.J., Ma, Y., Ventosa, A., and Grant, W., Natrialba hulunbeirensis sp. nov. and Natrialba chahannaoensis sp. nov., novel haloalkaliphilic archaea from soda lakes in Inner Mongolia Autonomous Region, China, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 1693‒1698. https://doi.org/10.1099/00207713-51-5-1693

    Article  CAS  PubMed  Google Scholar 

  30. Yakimov, M.M., Golyshin, P.N., Crisafi, F., Denaro, R., and Giuliano, L., Marine, aerobic hydrocarbon-degrading Gammaproteobacteria: the family Alcanivoracaceae, in Handbook of Hydrocarbon and Lipid Microbiology. Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes, McGenity, T.J., Ed., Springer, 2019, pp. 167‒179. https://doi.org/10.1007/978-3-319-60053-6_24-1

    Google Scholar 

  31. Zhang, Y.J., Zhang, X.Y., Zhao, H.L., Zhou, M.Y., Li, H.J., Gao, Z.M., Chen, X.L., Dang, H.Y., and Zhang, Y.Z., Idiomarina maris sp. nov., a marine bacterium isolated from sediment, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 370‒375.                                                  Translated by P. Sigalevich

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project 18-44-030021 r_a, and partially within the framework of the State Assignment AAAA-A17-117011810034-9 for Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Lavrentyeva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrentyeva, E.V., Erdyneeva, E.B., Banzaraktsaeva, T.G. et al. Prokaryotic Diversity in the Biotopes of the Gudzhirganskoe Saline Lake (Barguzin Valley, Russia). Microbiology 89, 359–368 (2020). https://doi.org/10.1134/S0026261720030157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720030157

Keywords:

Navigation