Skip to main content
Log in

Aluminium geochemistry in the bulk and rhizospheric soil of the species colonising an abandoned copper mine in Galicia (NW Spain)

  • SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Aluminium partitioning in the solid fraction and aluminium in solution in the bulk and rhizospheric soil of different plant species colonising an abandoned Cu mine slope (Calluna vulgaris, Erica cinerea and Salix atrocinerea) and mine dump (C. vulgaris and E. cinerea) were investigated. The aim of the study was to determine the changes that the species induce in the Al forms in the rhizosphere in order to adapt to heterogeneous substrates.

Materials and methods

Al was extracted from the solid phase with different solutions: ammonium oxalate (Alo), sodium pyrophosphate (Alp), copper chloride (Alcu), lanthanum chloride (Alla) and ammonium chloride (AlNH4). The following Al fractions were obtained: inorganic non-crystalline Al (Alop = Alo–Alp), highly stable organoaluminium complexes (Alpcu = Alp-Alcu), organoaluminium complexes of intermediate stability (Alcula = Alcu–Alla) and labile organoaluminium complexes (Alla). The concentration of Al present in the aqueous phase was also determined.

Results and discussion

The pH of the soil in the mine slope was close to 7, and the roots of Ericaceae caused strong acidification so that the pH of the rhizospheric soil was low (3.6–4.7). In contrast, the pH of the bulk and the rhizospheric soil of S. atrocinerea remained close to 7. In the mine dump (pH 3.7), the changes in the pH of the Ericaceae rhizosphere in relation to the bulk soil were not as marked as in the mine slope. Alop predominated in the solid phase (more than 70% of the Alo), and Alpcu predominated in the organoaluminium complexes (more than 55%), followed by Alcula (13% and 47%) and Alla (3% and 21%). The concentration of Al in solution was significantly related to the concentrations of AlNH4 (r = 0.43), Alla (r = 0.50) and Alcula (r = 0.45).

Conclusions

Ericaceae species grew in dump and slope materials because they modified the pH of the rhizospheric soil, while S. atrocinerea only grew in areas where the soil conditions were close to neutral. The concentration of aluminium fractions was higher in the Ericaceae rhizosphere soil than in Ericaceae bulk soil, S. atrocinerea rhizosphere and bulk soils. Moreover, highly stable organoaluminium complexes predominated, and the dissolved Al concentration was low, despite the strong acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez E, Martínez A, Calvo R (1992) Geochemical aspects of aluminum in forest soils in Galicia (NW Spain). Biogeochemistry 16:167–180

    Article  Google Scholar 

  • Álvarez E, Pérez A, Calvo R (1993) Aluminum speciation in surface waters and soil solutions in areas of sulphide mineralization in Galicia (NW Spain). Sci Total Environ 133:17–37

    Article  Google Scholar 

  • Álvarez E, Monterroso C, Fernández Marcos ML (2002) Aluminum fractionation in Galician (NW Spain) forest soils as related to vegetatian and parent material. Forest Ecol Manag 166:193–206

    Article  Google Scholar 

  • Álvarez E, Fernández Marcos ML, Monterroso C, Fernández Sanjurjo MJ (2005) Application of aluminum toxicity indices to soils under various forest species. Forest Ecol Manag 211:227–239

    Article  Google Scholar 

  • Alvarez-Valero AM, saez R, Pérez-López R, Delgado J (2009) Evaluation of heavy metals bio-availabitily from Almagrera pyrite-rich tailings dam (Iberian pyrite belt, SW Spain) based on a sequential extraction procedure. J Geochem Explor 102:87–94

    Article  CAS  Google Scholar 

  • Arthur MA, Fahey TJ (1993) Control on soil solution chemistry in a sulbalpine forets in north–central Colorado. Soil Sci Soc Am J 57:1123–1130

    Article  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Bascomb CL (1968) Distribution of pyrophosphate extractable iron and organic carbon in soils of various groups. J Soil Sci 19:251–256

    Article  CAS  Google Scholar 

  • Blakemore LD (1978) Exchange complex dominated by amorphous material (ECDAM). In: Smith GD (ed) The Andisol proposal. Soil Bureau, DSIR, New Zealand

    Google Scholar 

  • Brady NC, Weil RR (2002) Soil organic matter. In: Brady NC, Weil RR (eds) The nature and properties of soils. Prentice Hall, New Jersey

    Google Scholar 

  • Calvo de Anta R, Pérez A, Álvarez E (1991) Efectos de las minas de Arinteiro (A Coruña) sobre la calidad de aguas super y subsuperficiales. Ecol 5:87–100

    Google Scholar 

  • Calvo R, Pérez A (1993) Evolución mineralógica en medios afectados por contaminación ácida. Cuad Lab Xeol Laxe 18:337–343

    Google Scholar 

  • Camps M, Barreal ME, Mourenza C, Álvarez E, Kidd P, Macías F (2003) Rhizosphere chemistry in acid forest soils that differ in their degree of Al-saturation of organic matter. Soil Sci 168:267–279

    Article  Google Scholar 

  • Chung JB, Zazoski RJ (1994) Ammonium-potassium and ammonium-calcium exchange equilibrium in bulk and rhizosphere soil. Soil Sci Soc Am J 58:1368–1375

    Article  CAS  Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine taillings of the semiarid Cartagena-La Union mining district (SE Spain). Sci Total Environ 366:1–11

    Article  CAS  Google Scholar 

  • Corti B, Agnelli A, Cuniglio R, Fernández Sanjurjo M, Cocco S (2005) Characterization of rhizosphere soil from natural and agricultural environments. In: Huang PM, Gobran GR (eds) Biogoechemistry of trace elements in the rhizosphere. Elsevier, Amsterdam, pp 57–128

    Chapter  Google Scholar 

  • Díaz González TE, Fernández Prieto JA (1987) Asturias y Cantabria. In: Peinado L, Rivas M (eds) La vegetación en España. Colección aula abierta. Servicio de publicaciones. Universidad de Alcalá, Madrid

    Google Scholar 

  • Dougan WK, Wilson AL (1974) The absorptiometric determination of aluminium in water: a comparison of some chromomeric reagents and development of an improved method. Analyst 99:413–430

    Article  CAS  Google Scholar 

  • Fernández-Sanjurjo MJ, Corti G, Ugolini F (2000) Cambios químicos y mineralógicos en la fracción gruesa y fina del suelo volcánico en función de la distancia a la raíz. Agrochímica 44:69–78

    Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminium, and manganese toxicities in acid soil. In: Adams F (ed) Soil acidity and liming. ASA, Madison

    Google Scholar 

  • Gadner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. Plant Soil 70:107–124

    Article  Google Scholar 

  • Galán E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metals partitioning in river sediments severely polluted by acid mine drainage in the Iberian pyrite belt. Appl Geochem 18:409–421

    Article  Google Scholar 

  • Gallon C, Munger C, Prémont S, Campbell PGC (2004) Hydroponic study of aluminum accumulation by aquatic plants: effects of fluoride and pH. Water Air Soil Pollut 153:135–155

    Article  CAS  Google Scholar 

  • García-Rodeja E, Macías F (1987) Andosols developed form non-volcanic materials in Galicia (NW Spain). J Soil Sci 38:573–591

    Article  Google Scholar 

  • García-Rodeja E, Novoa JC, Pontevedra X, Martinez-Cortizas A, Buurman P (2004) Aluminium fractionation of European volcanic soils by selective dissolution techniques. Catena 56:155–183

    Article  Google Scholar 

  • Gobran GR, Clegg S, Courchesne F (1998) Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry 42:107–120

    Article  Google Scholar 

  • Göttlein A, Heim A, Matzner E (1999) Mobilization of aluminium in the rhizosphere soil solution of growing tree in an acidic soil. Plant Soil 211:41–49

    Article  Google Scholar 

  • Guitián F, Carballas T (1976) Técnicas de análisis de suelos. Pico Sacro, Santiago de Compostela

    Google Scholar 

  • Guo J, Vogt RD, Zhang X, Zhang Y, Seip HM, Xiao J, Tang H (2006) Aluminium mobilization from acidic forest soils in Leigongshan area, south-western China: laboratory and field study. Arch Environ Contam Toxicol 51:321–328

    Article  CAS  Google Scholar 

  • Hargrove WL, Thomas GW (1981) Extraction of aluminium from aluminium-organic matter complexes. Soil Sci Soc Am J 48:1458–1460

    Article  Google Scholar 

  • Haynes RJ (1990) Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rizosphere, a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jorge M (2007) Cambios químicos inducidos polas raíces de plantas establecidas en diferentes medios degradados. Universidad de Santiago de Compostela, España, Trabajo Fin de Carrera

    Google Scholar 

  • Juo AS, Kamprath EJ (1979) Copper chloride as an extractant for estimating the potentially reactive aluminum pool in acid soils. Soil Sci Soc Am J 43:35–38

    Article  CAS  Google Scholar 

  • Kamprath EJ (1970) Exchangeable aluminium as a criterion for liming leached mineral soils. Soil Sci Soc Am Proc 34:252–254

    Article  CAS  Google Scholar 

  • Kinraide TB (1997) Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluride complexes of aluminium. J Exp Bot 48:1115–1124

    Article  CAS  Google Scholar 

  • Kinraide TB, Parker DR, Zobel RW (2005) Organic acid secretion as a mechanism of aluminium resistence: a model incorporating the root cortex, epidermis, and the external unstirred layer. J Exp Bot 56:1853–1865

    Article  CAS  Google Scholar 

  • Lin C, Coleman MT (1960) The measurement of exchangeable aluminium in soils. Soil Sci Soc Am Proc 24:444–446

    Article  CAS  Google Scholar 

  • Lizarraga-Mendiola L, Gonzalez-Sandoval MR, Duran-Dominguez MC, Marquez-Herrera C (2009) Geochemical behavior of heavy metals in a Zn-Pb-Cu mining area in the State of Mexico (central Mexico). Environ Monit Assess 155:55–372

    Article  Google Scholar 

  • López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13

    Article  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminium in higher plants. Plant Cell Physiol 41:383–390

    CAS  Google Scholar 

  • Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a minereview. J Inorg Biochem 97:46–51

    Article  CAS  Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Marschner H, Romheld V (1983) In vivo measurement of root-induced pH changes at the soil-root interface: effects of plant species and nitrogen source. Z Pflanzenphysiol 111:441–451

    Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant 15:1409–1416

    Article  CAS  Google Scholar 

  • Merino A, Monterroso C, García-Rodeja E (1989) Contenido de S total en muestras superficiales de suelos de la provincia de A Coruña. Anal Edaf Agrobiol 48:615–626

    Google Scholar 

  • Mombiela FA, Mateo ME (1984) Necesidades de cal para praderas en terrenos “a monte”. I. Su relación con el aluminio cambiable en suelos sobre granitos y pizarras de Galicia. Anal INIA 25:129–143

    CAS  Google Scholar 

  • Monterroso C, Álvarez E, Macías F (1994) Speciation and solubility control of Al and Fe in mine soils solutions. Sci Total Environ 158:31–43

    Article  CAS  Google Scholar 

  • Monterroso C, Álvarez E, Fernández Marcos ML, Macías F (1998) Aluminium speciation and phytotoxicity in mine soils of a lignite mine in NW Spain. Fresenius' Environ Bull 7:65–73

    CAS  Google Scholar 

  • Morrillo J, Usero J, Gracia I (2002) Partitioning of metals in sediments from the Odiel river (Spain). Environ Int 28:263–271

    Article  Google Scholar 

  • Nieto JM, Sarmiento AM, Olías M, Canovas CR, Riba I, Kalman J, Devalls TA (2007) Acid drainage pollution in the Tinto and Odiel rivers (iberin pyrite belt, SW Spain) and bioavailability of the transported metals to the Huelva estuary. Environ Int 33:445–455

    Article  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, chemical and microbiological properties. EEUU, Madison, pp 403–430

    Google Scholar 

  • Otero XL, Vidal P, Calvo RM, Macías F (2005) Trace metals in biodeposits and sediments from mussel culture in the Ría de Arousa (Galicia, NW Spain). Environ Pollut 136:119–134

    Article  CAS  Google Scholar 

  • Peech L, Alexander LT, Dean LA (1947) Methods of soil analysis for soil fertility investigations. UDA Cir. No. 757. US Govt. Print. Office, Washington

  • Pérez-López R, Nieto JM, Ruiz de Almodóvar G (2007) Immobilization of toxic elements in mine residues derived from mining activities in the Iberian pyrite belt (SW Spain): laboratory experiments. Appl Geochem 22:1919–1935

    Article  Google Scholar 

  • Remon E, Bouchardon JL, Cornier B, Guy B, Leclerc JC, Faure O (2005) Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut 137:316–323

    Article  CAS  Google Scholar 

  • Rodwell JS (1991) British plant communities 2. Mires and heaths. Cambridge University Press, Cambridge

    Google Scholar 

  • Rotkittikhun P, Kruattrachue M, Chaiyarat R, Ngernsansaruary C, Pojethitiyook P, Pajitprapaporn A, Baker AJM (2006) Uptake and accumulation of lead by plants from Bo Nagam lead mine area in Thailand. Environ Pollut 144:681–688

    Article  CAS  Google Scholar 

  • Ruiz de la Torre J (1979) Árboles y arbustos de la España Peninsular. Escuela Técnica Superior de Ingenieros des Montes. Madrid

  • Sánchez-España J, López E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian pyrite belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356

    Article  Google Scholar 

  • Silva Pando J, Rigueiro A (1992) Guía das árbores e bosques de Galicia. Galaxia, Vigo

    Google Scholar 

  • Theng BKG, Russell M, Churchman GJ, Parfitt RL (1982) Surface properties of allophane, imogolite and halloysite. Clay Clay Min 30:143–149

    Article  CAS  Google Scholar 

  • Urrutia M, Macías F, García-Rodeja E (1995) Evaluación del CuCl2 y del LaCl3 como extractantes de aluminio en suelos ácidos de Galicia. Nova Acta Cient Compost 5:173–172

    Google Scholar 

  • Urrutia M, García-Rodeja E, Macías F (1988) Aplicación de disoluciones no tamponadas para la extracción de Al ‘activo’ ligado a la materia orgánica en suelos de Galicia. Anal Edaf Agrobiol 47:1289–1301

    Google Scholar 

  • Wada K (1977) Allophane and imogolite. In: Dixon JB, Weed SB (eds) Minerals in soil environments. SSSA, Madison

    Google Scholar 

  • Wang P, Bi S, Ma L, Han W (2006) Aluminium tolerance or two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots. J Agric Food Chem 54:10033–10039

    Article  CAS  Google Scholar 

  • Woolhouse HW (1981) Soil acidity, aluminium toxicity and related problems in the nutrient environment of heath lands. In: Specht RL (ed) Heath lands and related shrublands. Analytical studies. Ecosystems of the World 9B, Elsevier, Amsterdam

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Álvarez.

Additional information

Responsible editor: Chris Johnson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, E., Fernández-Sanjurjo, M., Otero, X.L. et al. Aluminium geochemistry in the bulk and rhizospheric soil of the species colonising an abandoned copper mine in Galicia (NW Spain). J Soils Sediments 10, 1236–1245 (2010). https://doi.org/10.1007/s11368-010-0245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0245-z

Keywords

Navigation