Skip to main content
Log in

Chromosomal differentiation of Tribe Cestreae (Solanaceae) by analyses of 18-5.8-26S and 5S rDNA distribution

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Tribe Cestreae is monophyletic with three genera: Cestrum, Sessea, and Vestia. Karyotypically, it is outstanding within Solanaceae by several features: (1) basic number x = 8, (2) large chromosome sizes, (3) complex heterochromatin patterns, (4) occurrence of B-chromosomes (Bs) in Cestrum with particular banding patterns and rDNA sites distribution, and (5) absence of Arabidopsis-type telomeres. Seventeen South American Cestreae species from the three genera were studied using fluorescence in situ hybridization (FISH) with ribosomal DNA regions (5S and 18-5.8-26S) as probes, with the aim of recognizing specific or group-specific chromosomal markers and analyzing karyotype diversity in a systematic and evolutionary context. The first chromosome number report for Cestrum euanthes, C. kunthii, C. lorentzianum, and C. tomentosum is included. Variation in number and distribution of rDNA loci was observed among the species, concerning both As and Bs chromosomes. Despite the constancy of the karyotype and numbers of rDNA loci, the mapping of 18-5.8-26S and 5S rDNA loci allowed to differentiate Cestreae genera and species groups within Cestrum, highlighting the importance of these markers as cytotaxonomic character in this tribe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta MC, Moscone EA (2011) B chromosomes in Nierembergia aristata (Solanaceae): nucleolar activity and competition with the A chromosomes. Cytogenet Genome Res 132:105–112

    Article  CAS  PubMed  Google Scholar 

  • Benítez de Rojas C, D’Arcy WG (1998) The genera Cestrum and Sessea (Solanaceae: Cestreae) in Venezuela. Ann Missouri Bot Gard 85:273–351

    Article  Google Scholar 

  • Benítez de Rojas C, Nee M (2001) The neotropical genus Sessea (Solanaceae): a preliminary survey. In: van de Berr RG, Barendse GWM, van der Werden GM, Mariani C (eds) Solanaceae V: advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, pp 153–159

    Google Scholar 

  • Berg C, Greilhuber J (1992) Cold-sensitive chromosome regions and their relation to constitutive heterochromatin in Cestrum parqui (Solanaceae). Genome 35:921–930

    Article  Google Scholar 

  • Berg C, Greilhuber J (1993) Cold-sensitive chromosome regions and heterochromatin in Cestrum (Solanaceae): C. strigillatum, C. fasciculatum, and C. elegans. Pl Syst Evol 185:133–151

    Article  Google Scholar 

  • Bolkhovskikh Z, Grif V, Matvejeva T, Zakharyeva O (1969) Chromosome numbers of flowering plants. O. Koeltz Sci Publ, Koenigstein

    Google Scholar 

  • Camacho JPM, Sharbel TF, Beukeboom LW (2000) B chromosome evolution. Philos Trans Ser B 355:163–178

  • Carvalho L, Schnnoor A (1997) Sessea Carv. Et Schnoor, uma nova seçao para o genero Cestrum. Rodriguésia 45:15–24

    Google Scholar 

  • Chiarini FE, Santiñaque FF, Urdampilleta JD, Las Peñas ML (2014) Genome size and karyotype diversity in Solanum sect. Acanthophora (Solanaceae). Pl Syst Evol 300:113–125

    Article  Google Scholar 

  • Dunal MF (1852) Solanaceae. In: de Candolle A (ed) Prodromus, vol 13. Paris, pp 1–690

  • Faini FR, Torres A, Castillo M (1984) (25R)-isonuatigenin, an unusual steroidal sapogenin from Vestia lycioides. Phytochemistry 23:1301–1306

    Article  CAS  Google Scholar 

  • Fay MF, Olmstead RG, Richardson JE, Santiago-Valentin E, Prance GT, Chase MW (1998) Molecular data support the inclusion of Duckeodendron cestroides in Solanaceae. Kew Bull 53:203–212

    Article  Google Scholar 

  • Fernandes T, de Rego Almeida L, Nardy M, Yuyama PM, Vanzela ALL (2009) Karyotype differentiation of four Cestrum species (Solanaceae) revealed by fluorescent chromosome banding and FISH. Genet Molec Biol 32:320–327

    Article  Google Scholar 

  • Francey P (1935) Monographie du genre Cestrum L. Candollea 6:46–398

    Google Scholar 

  • Francey P (1936) Monographie du genre Cestrum L., partie II. Candollea 7:1–132

    Google Scholar 

  • Fregonezi JN, Rocha C, Torezan JMD, Vanzela ALL (2004) The occurrence of different Bs in Cestrum intermedium and C. strigilatum (Solanaceae) evidenced by chromosome banding. Cytogenet Genome Res 106:184–188

    Article  CAS  PubMed  Google Scholar 

  • Fregonezi JN, Fernandes T, Torezan JMD, Vieira AOS, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species (Solanaceae) based on the physical mapping of repetitive DNA. Genet Mol Biol 29:97–104

    Article  CAS  Google Scholar 

  • Fregonezi JN, Vilas-Boas LA, Fungaro MHP, Gaeta ML, Vanzela ALL (2007) Distribution of a Ty3/gypsy-like retroelement on the A and B-chromosomes of Cestrum strigilatum Ruiz & Pav. And Cestrum intermedium Sendtn. (Solanaceae). Genet Molec Biol 30:599–604

    Article  CAS  Google Scholar 

  • Garcia S, Garnatje T, Kovarik A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121:389–394

    Article  CAS  PubMed  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldblatt P (1984). Index to plant chromosome numbers 1979–1981. Monogr Syst Bot Missouri Bot Gard vol. 8, St. Louis

  • Goldblatt P, Johnson DE (1991) Index to plant chromosome numbers 1988–1989. Monogr Syst Bot Missouri Bot Gard vol. 40, St. Louis

  • Goldblatt P, Johnson DE (1996) Index to plant chromosome numbers 1992–1993. Monogr Syst Bot Missouri Bot Gard vol. 58, St. Louis

  • Guerra M (1983) O uso do Giemsa em Citogenética Vegetal: comparação entre a coloração simples e o bandamento. Ciênc Cult 35:190–193

    Google Scholar 

  • Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN (2014) Evolution and biology of supernumerary B chromosomes. Cell Molec Life Sci 71:467–478

    Article  CAS  PubMed  Google Scholar 

  • Hunziker AT (2001) Genera Solanacearum. The genera of Solanaceae illustrated, arranged according to a new system. A. R. G. Gantner Verlag, Rugell

    Google Scholar 

  • Jones N, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Pl Sci 8:417–423

    Article  CAS  Google Scholar 

  • Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novak P, Houben A (2013) High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol 199:550–558

    Article  CAS  PubMed  Google Scholar 

  • Kokubugata G, Forster PI (2006) Molecular-cytotaxonomy of Cycas (Cycadales) using 5S ribosomal DNA markers. Nat Sci Mus Monogr 34:163–170

    Google Scholar 

  • Lamb JC, Riddle NC, Cheng YM, Theuri J, Birchler JA (2007) Localization and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosome Res 15:383–398

    Article  CAS  PubMed  Google Scholar 

  • Lan T, Albert V (2011) Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol 11:126

    Article  PubMed Central  PubMed  Google Scholar 

  • Las Peñas ML, Chiarini FE, Bernardello G, Benítez de Rojas C (2006) Karyotypes of some species of Cestrum, Sessea, and Vestia (tribe Cestreae, Solanaceae). Caryologia 59:131–137

    Article  Google Scholar 

  • Levan A, Sandberg A, Fredga K (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Liu ZL, Zhang D, Hong DY, Wang XR (2003) Chromosomal localization of 5S and 18S–5.8S–25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor Appl Genet 106:198–204

    CAS  PubMed  Google Scholar 

  • Montero-Castro JC, Delgado-Salinas A, De Luna E, Eguiarte LE (2006) Phylogenetic analysis of Cestrum Section Habrothamnus (Solanaceae) based on plastid and nuclear DNA sequences. Syst Bot 31:843–850

    Article  Google Scholar 

  • Moscone EA (1992) Estudios de cromosomas meióticos en Solanaceae de Argentina. Darwiniana 31:261–297

    Google Scholar 

  • Olmstead RJ, Palmer JD (1992) A chloroplast DNA phylogeny of the Solanaceae: subfamilial relationships and character evolution. Ann Missouri Bot Gard 79:346–360

    Article  Google Scholar 

  • Olmstead RJ, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Royal Bot Gard, Kew, pp 111–137

    Google Scholar 

  • Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159–1181

    Google Scholar 

  • Ran Y, Hammett KRW, Murray BG (2001) Phylogenetic analysis and karyotype evolution in the genus Clivia (Amaryllidaceae). Ann Bot (Oxford) 87:823–830

    Article  CAS  Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    Article  CAS  PubMed  Google Scholar 

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:1–13

    Article  Google Scholar 

  • Romanutti A, Hunziker AT (1998) Cestreae Solanaceae, parte 7. In: Hunziker AT (ed) Flora Fanerogámica Argentina. Proflora-Conicet, Córdoba, pp 1–14

    Google Scholar 

  • Santiago-Valentin E, Olmstead RG (2003) Phylogenetics of the Antillean Goetzeoideae (Solanaceae) and their relationships within the Solanaceae based on chloroplast and ITS DNA sequence data. Syst Bot 28:452–460

    Google Scholar 

  • Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Schwarzacher TP, Heslop-Harrison P (2000) Practical in situ hybridization, 2nd edn. Bios, Oxford

    Google Scholar 

  • Sharma AK, Sharma A (1957) Karyotype studies in Cestrum as an aid to taxonomy. Genetica 29:83–100

    Article  Google Scholar 

  • Shibata F, Hizume M (2002) Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet 105:167–172

    Article  CAS  PubMed  Google Scholar 

  • Sykorova E, Lim KY, Chase MW, Knapp S, Leitch IJ, Leitch AR, Fajkus J (2003a) The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): first evidence from eudicots. Pl J 34:283–291

    Article  CAS  Google Scholar 

  • Sykorova E, Lim KY, Fajkus J, Leitch AR (2003b) The signature of the Cestrumgenome suggests an evolutionary response to the loss of (TTTAGGG)n telomeres. Chromosoma 112:164–172

    Article  CAS  PubMed  Google Scholar 

  • Tate JA, Acosta MC, McDill J, Moscone EA, Simpson BB, Cocucci AA (2009) Phylogeny and character evolution in Nierembergia (Solanaceae): molecular, morphological, and cytogenetic evidence. Syst Bot 34:198–206

    Article  Google Scholar 

  • Tschischow NT (1956) Número de cromosomas de algunas plantas chilenas. Bol Soc Biol Concepción 31:145–147

    Google Scholar 

  • Urdampilleta JD, Coulleri JP, Ferrucci MS, Forni-Martins ER (2013) Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae). Pl Biol 15:868–881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Argentinean agencies: CONICET, ANPCyT—FONCyT, MINCyT—Córdoba, and SECyT—Universidad Nacional de Córdoba for financial support and Dr. Gloria Barboza for determination and collection of plant materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Urdampilleta.

Additional information

Handling editor: Eric Schranz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urdampilleta, J.D., Chiarini, F., Stiefkens, L. et al. Chromosomal differentiation of Tribe Cestreae (Solanaceae) by analyses of 18-5.8-26S and 5S rDNA distribution. Plant Syst Evol 301, 1325–1334 (2015). https://doi.org/10.1007/s00606-014-1158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1158-x

Keywords

Navigation