Skip to main content

Advertisement

Log in

Proteomic and morphometric study of the in vitro interaction between Oncidium sphacelatum Lindl. (Orchidaceae) and Thanatephorus sp. RG26 (Ceratobasidiaceae)

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Orchidaceae establish symbiotic relationships with fungi in the Rhizoctonia group, resulting in interactions beneficial to both organisms or in cell destruction in one of them (pathogenicity). Previous studies have focused mostly on terrestrial species with a few, preliminary studies, on epiphytes. To further our understanding of the molecular mechanisms involved in these symbioses, we evaluated the interaction between Oncidium sphacelatum Lindl. and the mycorrhizal fungus Thanatephorus sp. strain RG26 (isolated from a different orchid species) in vitro using morphometric and proteomic analyses. Evidence from the morphometric and microscopic analysis showed that the fungus promoted linear growth and differentiation of orchid protocorms during 98 days interaction. On day 63, protocorm development was evident, so we analyzed the physiological response of both organisms at that moment. Proteome results suggest that orchid development stimulated by the fungus apparently involves cell cycle proteins, purine recycling, ribosome biogenesis, energy metabolism, and secretion that were up-regulated in the orchid; whereas in the fungus, a high expression of proteins implicated in stress response, protein-protein interaction, and saccharides and protein biosynthesis were found in the symbiotic interaction. This is the first work reporting proteins differentially expressed in the epiphytic orchid-fungus interaction and will contribute to the search for molecular markers that will facilitate the study of this symbiosis in both wild orchids and those in danger of extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed AOA, Mukhtar MM, Kools-Sijmons M, Fahal AH, Hoog S, Ende BG, Zijlstra EE, Verbrugh H, Abugroun AM, Elhassan AM, Belkum A (1999) Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J Clin Microbiol 37:3175–3178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens. Br New Phytol 101:657–665. doi:10.1111/j.1469-8137.1985.tb02871.x

    Article  Google Scholar 

  • Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–97. doi:10.1007/BF02858656

    Article  Google Scholar 

  • Asiimwe T, Krause K, Schlunk I, Kothe E (2012) Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. Mycorrhiza 22:471–484. doi:10.1007/s00572-011-0424-9

    Article  CAS  PubMed  Google Scholar 

  • Bayman P, Otero JT (2006) Microbial endophytes of orchid roots. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes, 1st edn. Springer, Berlin Heidelberg, pp 153–177

    Chapter  Google Scholar 

  • Bertolini V, Damon A, Rojas ANV (2011) Symbiotic germination of three species of epiphytic orchids susceptible to genetic erosion, from Soconusco (Chiapas, Mexico). Eur J Environ Sci 1:60–68, ISSN 2336-1964 (Online)

    Google Scholar 

  • Bertolini V, Damon A, Rojas ANV (2014) Quelato de hierro y agua de coco en la germinación in vitro de Rossioglossum grande (Orchidaceae). Acta Agron 63:1–14. doi:10.15446/acag.v63n3.42735

    Article  Google Scholar 

  • Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384. doi:10.1074/jbc.C100472200

    Article  CAS  PubMed  Google Scholar 

  • Blakeman JP, Mokahel MA, Hadley G (1976) Effect of mycorrhizal infection on respiration and activity of some oxidase enzymes of orchid protocorms. New Phytol 77:697–704. doi:10.1111/j.1469-8137.1976.tb04663.x

    Article  CAS  Google Scholar 

  • Brown SH, Yarden O, Gollop N, Chen S, Zveibil A, Belausov E, Freeman S (2008) Differential protein expression in Colletotrichum acutatum: changes associated with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry. Mol Plant Pathol 9:171–190. doi:10.1111/j.1364-3703.2007.00454.x

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes, 1st edn. Springer, Berlin Heidelberg, pp 281–298

    Chapter  Google Scholar 

  • Brychkova G, Alikulov Z, Fluhr R, Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant J 54:496–509. doi:10.1111/j.1365-313X.2008.03440.x

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184. doi:10.1111/j.1469-8137.2008.02533.x

    Article  CAS  PubMed  Google Scholar 

  • Campbell NA, Reece JB (2007) Biología. Editorial Médica Panamericana, Madrid

  • Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T (2006) The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J Mol Biol 358:1010–1022. doi:10.1016/j.jmb.2006.02.062

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Gupta S, Bhar A, Das S (2012) Optimization of an efficient protein extraction protocol compatible with two-dimensional electrophoresis and mass spectrometry from recalcitrant phenolic rich roots of Chickpea (Cicer arietinum L.). Int J Proteomics. doi:10.1155/2012/536963

    PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Chen G, Hao D, Lu H, Shi M, Mao Y, Huang X, Zhang Z, Xue L (2014) Salt-induced root protein profile changes in seedlings of maize inbred lines with differing salt tolerances. Chilean J Agric Res 74:468–476. doi:10.4067/S0718-58392014000400014

    Article  Google Scholar 

  • Chuong SDX, Good AG, Taylor GJ, Freeman MC, Moorhead GBG, Muench DG (2004) Large-scale identification of tubulin-binding proteins provides insight on subcellular trafficking, metabolic channeling, and signaling in plant cells. Mol Cell Proteomics 3:970–983. doi:10.1074/mcp.M400053-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Damon A (2013) Conservation status and strategies for the preservation of orchids in the Soconusco region of southeast Mexico. Lankesteriana 13:27–31. doi:10.15517/lank.v0i0.11530

    Google Scholar 

  • Damon AA, Cruz-López L (2006) Fragrance in relation to pollination of Oncidium sphacelatum and Trichocentrum oerstedii (Orchidaceae) in the Soconusco region of Chiapas, Mexico. Selbyana 27:186–194. doi:10.2307/41760281

    Google Scholar 

  • Damon A, Salas-Roblero P (2007) A survey of pollination in remnant orchid populations in Soconusco, Chiapas, Mexico. Trop Ecol 48:1–14, ISSN 0564-3295

    Google Scholar 

  • Damon A, Aguilar-Guerrero E, Rivera L, Nikolaeva V (2004) Germinación in vitro de semillas inmaduras de tres especies de orquídeas de la región del Soconusco, Chiapas, México. Rev Chapingo Ser Horticultura 10:195–203

    Google Scholar 

  • Dell’Aquila A (2005) The use of image analysis to monitor the germination of seeds of broccoli (Brassica oleracea) and radish (Raphanus sativus). Ann Appl Biol 146:545–550. doi:10.1111/j.1744-7348.2005.040153.x

    Article  Google Scholar 

  • Dell’Aquila A (2009) Digital imaging information technology applied to seed germination testing. A review. Agron Sustain Dev 29:213–221. doi:10.1051/agro:2008039

    Article  Google Scholar 

  • Díaz EC, Martin F, Tagu D (1996) Eucalypt α-tubulin: cDNA cloning and increased level of transcripts in ectomycorrhizal root system. Plant Mol Biol 31:905–910. doi:10.1007/BF00019477

    Article  PubMed  Google Scholar 

  • Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104. doi:10.1046/j.1365-313x.2000.00722.x

    Article  CAS  PubMed  Google Scholar 

  • Eaton CJ, Jourdain I, Foster SJ, Hyams JS, Scott B (2008) Functional analysis of a fungal endophyte stress-activated MAP kinase. Curr Genet 53:163–174. doi:10.1007/s00294-007-0174-6

    Article  CAS  PubMed  Google Scholar 

  • El Rabey HA, Al-Malki AL, Abulnaja KO, Rohde W (2015) Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.). Int J Genomics. Article ID 407165. doi:http://dx.doi.org/10.1155/2015/407165

  • Encarnación S, Hernández M, Martínez-Batallar G, Contreras S, Vargas MC, Mora J (2005) Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes. Biol Proced Online 7:117–135. doi:10.1251/bpo110

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233. doi:10.2307/2399395

    Article  Google Scholar 

  • Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267. doi:10.1105/tpc.104.027557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González MG (2008) Aspectos de sistemática y biología del complejo Rhizoctonia. Fitosanidad 12:147–159, ISSN: 1562-3009

    Google Scholar 

  • González D (2013) Identification, molecular characterization, and evolution of group I introns at the expansion segment D11 of 28S rDNA in Rhizoctonia species. Fungal Biol II7:623–637. doi:10.1016/j.funbio

    Article  Google Scholar 

  • Gonzalez D, Carling DE, Kuninaga S, Vilgalys R, Cubeta MA (2001) Ribosomal DNA systematics of Ceratobasidium and Thanatephorus with Rhizoctonia anamorphs. Mycologia 93:1138–1150. doi:10.2307/3761674

    Article  CAS  Google Scholar 

  • González D, Cubeta MA, Vilgalys R (2006) Phylogenetic utility of indels within ribosomal DNA and β-tubulin sequences from fungi in the Rhizoctonia solani species complex. Mol Phylogenet Evol 40:459–470. doi:10.1016/j.ympev.2006.03.022

    Article  PubMed  Google Scholar 

  • González-García V, Portal MAO, Rubio VS (2006) Review. Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79. doi:10.5424/sjar/2006041-178

    Article  Google Scholar 

  • Hadley G, Williamson B (1971) Analysis of the post-infection growth stimulus in orchid mycorrhiza. New Phytol 70:445–455. doi:10.1111/j.1469-8137.1971.tb02546.x

    Article  Google Scholar 

  • Hicks AJ (2007) Orchid seed germination media. A compendium of formulations. The orchid seedbank project, USA

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806. doi:10.1104/pp.81.3.802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169:336–344. doi:10.1016/j.jplph.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Knudson L (1946) A new nutrient solution for the germination of orchid seed. Am Orchid Soc Bull 14:214–217

    Google Scholar 

  • Kuga Y, Sakamoto N, Yurimoto H (2014) Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol 202:594–605. doi:10.1111/nph.12700

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38:471, PMCID: PMC88759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez P, Ljungdahl PO (2005) Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol Cell Biol 25:9435–9446. doi:10.1128/MCB.25.21.9435-9446.2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosquera-Espinosa AT, Bayman P, Otero JT (2010) Ceratobasidium como hongo micorrízico de orquídeas en Colombia. Acta Agron (Palmira) 59:316–326, ISSN: 0120-2812

    Google Scholar 

  • Mosquera-Espinosa AT, Bayman P, Prado GA, Gómez-Carabalí, Otero JO (2013) The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia 105:141–150. doi:10.3852/12-079

    Article  PubMed  Google Scholar 

  • Nieto GL, Damon A (2008) Morphology of the pollinia and pollinaria of orchids from southeast Mexico. Selbyana 29:20–68. doi:10.2307/41760316

    Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Kirschner R, Garnica S (2013) Taxonomic re-evaluation of the Ceratobasidium-Rhizoctonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycol Prog 12:763–776. doi:10.1007/s11557-013-0936-0

    Article  Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC, Araújo EF (2005a) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65. doi:10.1139/B04-151

    Article  CAS  Google Scholar 

  • Pereira OL, Kasuya MCM, Rollemberg CL, Borges AC (2005b) Indução in vitro da germinação de sementes de Oncidium flexuosum (Orchidaceae) por fungos micorrízicos rizoctonióides. Rev Bras Cienc Solo 29:199–206. doi:10.1590/S0100-06832005000200005

    Article  Google Scholar 

  • Perotto S, Rodda M, Benetti A, Sillo F, Ercole E, Rodda M, Girlanda M, Murat C, Balestrini R (2014) Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. Planta 239:1337–1349. doi:10.1007/s00425-014-2062-x

    Article  CAS  PubMed  Google Scholar 

  • Peterson RL, Uetake Y, Bonfante P, Faccio A (1996) The interface between fungal hyphae and orchid protocorm cells. Can J Botany 74:1861–1870. doi:10.1139/b96-223

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2007) Mycorrhizal fungi of Vanilla: Diversity, specificity and effects on seed germination and plant growth. Mycologia 99:510–525. doi:10.3852/mycologia.99.4.510

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163. doi:10.1023/A:1020246715436

    Article  CAS  Google Scholar 

  • Reyes Y, Mazorra LM, Núñez CM (2008) Aspectos fisiológicos y bioquímicos de la tolerancia del arroz al estrés salino y su relación con los brasinoesteroides. Cultivos Tropicales 29:67–75, ISSN 0258-5936

    Google Scholar 

  • Rocak S, Linder P (2004) DEAD-Box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Bio 5:232–241. doi:10.1038/nrm1335

    Article  CAS  Google Scholar 

  • Ruiz-Nieto JE, Montero VT, Acosta JAG, Piedra EI, Aguirre CLM, Ramírez JGP, Raya JCP (2013) Caracterización fisiológica y genética del uso eficiente del agua en dos variedades de frijol contrastantes. Cienc Tecnol Agrop México 1:43–51

    Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210. doi:10.1016/S0092-8674(00)80830-2

    Article  CAS  PubMed  Google Scholar 

  • Seaton P, Ramsay M (2005) Growing orchids seed. Royal Botanic Gardens, Kew, UK

  • Smith SE, Read DJ (1996) Mycorrhizal symbiosis. Academic, California

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Takemoto D, Tanaka A, Scott B (2006) A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821. doi:10.1105/tpc.106.046169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68:1165–1178. doi:10.1111/j.1365-2958.2008.06217.x

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primer and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033. doi:10.1111/j.1469-8137.2007.02320.x

    Article  CAS  PubMed  Google Scholar 

  • Timonen S, Peterson RL (2002) Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244:199–210. doi:10.1023/A:1020209213524

    Article  CAS  Google Scholar 

  • Timonen S, Smith SE (2005) Effect of the arbuscular mycorrhizal fungus Glomus intraradices on expression of cytoskeletal proteins in tomato roots. Can J Botany 83:176–182. doi:10.1139/b04-160

    Article  CAS  Google Scholar 

  • Tumusiime S, Zhang C, Overstreet MS, Liu Z (2011) Differential regulation of transcription factor Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing pathway. J Biol Chem 286:4620–4631. doi:10.1074/jbc.M110.195313

    Article  CAS  PubMed  Google Scholar 

  • Uetake Y, Peterson LR (1996) Changes in actin filament arrays in protocorm cells of the orchid species, Spiranthes sinensis, induced by the symbiotic fungus Ceratobasidium cornigerum. Can J Bot 75:1661–1669. doi:10.1139/b97-879

    Article  Google Scholar 

  • Uetake Y, Peterson LR (1998) Association between microtubules and symbiotic fungal hyphae in protocorm cells of the orchid species, Spiranthes sinensis. New Phytol 140:715–722. doi:10.1046/j.1469-8137.1998.00310.x

    Article  Google Scholar 

  • Valadares RBS, Perotto S, Santos EC, Lambais MR (2013) Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 24:349–360. doi:10.1007/s00572-013-0547-2

    Article  PubMed  Google Scholar 

  • Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Obul PCR, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641. doi:10.1016/j.plantsci.2008.06.017

    Article  CAS  Google Scholar 

  • Verdugo G, Marchant J, Cisternas M, Calderón X, Peñaloza P (2007) Caracterizacion morfometrica de la germinacion de Chloraea crispa Lindl. (Orchidaceae) usando analisis de imagenes. Gayana Bot 64:232–238. doi:10.4067/S0717-66432007000200008

    Article  Google Scholar 

  • Wang SZ, Roberts RM (2005) The evolution of the Sin1 gene product, a little known protein implicated in stress responses and type I interferon signaling in vertebrates. BMC Evol Biol 5:13. doi:10.1186/1471-2148-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Nakagawa A, Izumi S, Shimada H, Sakamoto A (2010) RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis. FEBS Lett 584:1181–1186. doi:10.1016/j.febslet.2010.02.023

    Article  CAS  PubMed  Google Scholar 

  • Watkinson JI, Welbaum GE (2003) Characterization of gene expression in roots of Cypripedium parviflorum var. pubescens incubated with a mycorrhizal fungus. Acta Hortic 463-470. doi:10.17660/ActaHortic.2003.624.64

  • Weber RWS, Webster J (2001) Teaching techniques for mycology: 14. Mycorrhizal infection of orchid seedlings in the laboratory. Mycologist 15:55–59. doi:10.1016/S0269-915X(01)80077-X

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal genes for phylogenetics. In: Innis M, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297. doi:10.1007/s11103-011-9762-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol 163:273–286. doi:10.1016/j.jplph.2005.11.013

    Article  CAS  PubMed  Google Scholar 

  • Yagame T, Yamato M, Suzuki A, Iwase K (2008) Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana. Mycorrhiza 18:97–101. doi:10.1007/s00572-007-0155-0

    Article  PubMed  Google Scholar 

  • Zettler LW, Mclnnis TM (1993) Symbiotic seed germination and development of Spiranthes cernua and Goodyera pubescens (Orchidaceae: Spiranthoideae). Lindleyana 8:155–162

    Google Scholar 

  • Zhao MM, Zhang G, Zhang DW, Hsiao YY, Guo SX (2013) ESTs Analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PLoS One 8:e72705. doi:10.1371/journal.pone.0072705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Guadalupe Nieto-López for the scanning electron microscopy analysis, Luis Barbosa for analysis with the MATLAB R2012a program, Alejandro Zamora for help in protein extraction and the phylogenetic reconstruction of strain RG26, and the Consejo Nacional de Ciencia y Tecnología scholarship No. 355415. We thank Michael F. Dunn for his valuable contribution to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Guillén-Navarro.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Chávez, M.Y., Guillén-Navarro, K., Bertolini, V. et al. Proteomic and morphometric study of the in vitro interaction between Oncidium sphacelatum Lindl. (Orchidaceae) and Thanatephorus sp. RG26 (Ceratobasidiaceae). Mycorrhiza 26, 353–365 (2016). https://doi.org/10.1007/s00572-015-0676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0676-x

Keywords

Navigation