Skip to main content
Log in

Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Orchid mycorrhiza has been often interpreted as an antagonistic relationship. Our data on mycorrhizal protocorms do not support this view as plant defence genes were not induced, whereas some nodulin-like genes were significantly up-regulated.

Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

GO:

Gene ontology

References

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytol 101:657–665

    Article  Google Scholar 

  • Balestrini R, Hahn MG, Faccio A, Mendgen K, Bonfante P (1996) Differential localization of carbohydrate epitopes in plant-cell walls in the presence and absence of arbuscular mycorrhizal fungi. Plant Physiol 111:203–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balestrini R, Lanfranco L (2006) A functional AM symbiosis: the “gene expression” view point. Mycorrhiza 16:509–524

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Gómez-Ariza J, Klink VP, Bonfante P (2009) Application of laser microdissection to plant pathogenic and symbiotic interactions. J Plant Interact 4:81–92

    Article  CAS  Google Scholar 

  • Bapaume L, Reinhardt D (2012) How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. Front Plant Sci 3:223. doi:10.3389/fpls.2012.00223

    Article  PubMed Central  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bernard N (1909) L’évolution dans la symbiose. Les orchidées et leurs champignons commensaux. Annales des Sciences Naturelles, Botanique, Paris 9:1–196

    Google Scholar 

  • Bonanomi A, Wiemken A, Boller T, Salzer P (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol 3:194–200

    Article  CAS  Google Scholar 

  • Burges A (1939) The defensive mechanism in orchid mycorrhizas. New Phytol 38:273–283

    Article  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid Goodyera repens. New Phytol 180:176–184

    Article  CAS  PubMed  Google Scholar 

  • Campos-Soriano L, San Segundo B (2011) New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal Behav 6:553–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013) Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Carney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, Qu X-Q et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cox K, Layne D, Scorza R, Schnabel G (2006) Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco. Planta 224:1373–1383

    Article  CAS  PubMed  Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M-A (2012) Orchid mycorrhizas: Molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, 2nd edn. Springer-Verlag, Berlin, pp 207–230

    Chapter  Google Scholar 

  • Dexheimer J, Serrigny J (1983) Etude ultrastructurale des endomycorrhizes d’une Orchidèe tropicale: epidendrum ibaguense HBK. I. Localisation des activitè phosphatasiques acides et alcalines. Bull Soc Bot 130:187–194

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emmersen J, Rudd S, Mewes HW, Tetko I (2007) Separation of sequences from host-pathogen interface using triplet nucleotide frequencies. Fungal Genet Biol 44:231–241

    Article  CAS  PubMed  Google Scholar 

  • Fernandez D, Tisserant E, Talhinhas P, Azinheira H, Vieira A, Petitot A-S, Loureiro A, Poulain J, Da Silva C, Silva MDC, Duplessis S (2012) 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta expressed pathogen-secreted proteins and plant functions expressed in a late compatible plant–rust interaction. Mol Plant Pathol 13:17–37

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Frühling M, Albus U, Hohnjec N, Geise G, Pühler A, Perlick AM (2000) A small gene family of broad bean codes for late nodulins containing conserved cysteine clusters. Plant Sci 152:67–77

    Article  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163

    Article  PubMed  Google Scholar 

  • Greene EA, Erard M, Dedieu A, Barke DGB (1998) MtENOD16-20 are members of a family of phytocyanin-related early nodulins. Plant Mol Biol 36:775–783

    Article  CAS  PubMed  Google Scholar 

  • Hadley G, Purves S (1974) Movement of 14carbon from host to fungus in orchid mycorrhiza. New Phytol 73:475–482

    Article  CAS  Google Scholar 

  • Harrison MJ (1998) Development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 1:360–365

    Article  CAS  PubMed  Google Scholar 

  • Heller G, Lundén K, Finlay RD, Asiegbu FO, Elfstrand M (2012) Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation. Mycorrhiza 22:271–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarsch IK, Ott T (2011) Perspectives on remorin proteins, membrane rafts and their role during plant–microbe interactions. Mol Plant Microbe Interact 24:7–12

    Article  CAS  PubMed  Google Scholar 

  • Jiang S-Y, Ma Z, Ramachandran S (2010) Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol 10:79

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Khan JA, Wang Q, Sjolund RD, Schulz A, Thompson GA (2007) An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis. Plant Physiol 143:1576–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leake JR (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:422–428

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Blaylock L, Endre G, Cho J, Town CD, VandenBosch K, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420:57–65

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Asami T, Suzuki Y (2009) Genome-wide identification, structure and expression studies, and mutant collection of 22 early nodulin-like protein genes in Arabidopsis. Biosci Biotechnol Biochem 73:2452–2459

    Article  CAS  PubMed  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2004) Differences in mycorrhizal preferences between two tropical orchids. Mol Ecol 13:2393–2404

    Article  CAS  PubMed  Google Scholar 

  • Parmeter JR (1970) Rhizoctonia solani, biology and pathology. University of California, London

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Peterson RL, Bonfante P, Faccio A et al (1996) The interface between fungal hyphae and orchid protocorm cells. Can J Bot 74:1861–1870

    Article  Google Scholar 

  • Peterson RL, Farquhar ML (1994) Mycorrhizas—integrated development between roots and fungi. Mycologia 86:311–326

    Article  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HN (1995) Terrestrial Orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge, p 312

    Book  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant Microbe Interact 13:763–777

    Article  CAS  PubMed  Google Scholar 

  • Sattayasai N, Sudmoon R, Nuchadomrong S, Chaveerach A, Kuehnle AR, Mudalige-Jayawickrama RG, Bunyatratchata W (2009) Dendrobium findleyanum agglutinin: production, localization, anti-fungal activity and gene characterization. Plant Cell Rep 28:1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Scheres B, van Engelen F, van der Knaap E, van de Wiel C, van Kammen A, Bisseling T (1990) Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2:687–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Matsuura M, Takada N, Koda Y (2007) An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae). Phytochemistry 68:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Smith SE (1967) Carbohydrate translocation in orchid mycorrhizal fungi. New Phytol 66:371–378

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tarkka M, Herrmann S, Wubet T et al (2013) OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytol 199:529–540

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer-Verlag, Berlin, pp 375–413

    Chapter  Google Scholar 

  • Uetake Y, Peterson RL (1998) Association between microtubules and symbiotic fungal hyphae in protocorm cells of the orchid species, Spiranthes sinensis. New Phytol 140:715–722

    Article  Google Scholar 

  • Van Damme EJ, Balzarini J, Smeets K, Van Leuven F, Peumans WJ (1994) The monomeric and dimeric mannose-binding proteins from the Orchidaceae species Listera ovata and Epipactis helleborine: sequence homologies and differences in biological activities. Glycoconj J 11:321–332

    Article  PubMed  Google Scholar 

  • Watkinson JO, Welbaum GE (2003) Characterization of gene expression in roots of Cypripedium parviflorum var. pubescens incubated with a mycorrhizal fungus. Acta Hort 624:463–470

    CAS  Google Scholar 

  • Van Waes JM, Deberg PC (1986) In vitro germination of some Western European orchids. Physiol Plant 67:253–261

    Article  Google Scholar 

  • Wang XC, Bauw G, Van Damme EJM, Peumans WJ, Chen ZL, Van Montagu M, Angenon G, Dillen W (2001) Gastrodianin-like mannose-binding proteins, a novel class of plant proteins with antifungal properties. Plant J 25:651–661

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Shen Y, Hu Y, Tan S, Lin Z (2011) A phytocyanin-related early nodulin-like gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco. J Plant Physiol 168:935–943

    Article  CAS  PubMed  Google Scholar 

  • Zampieri E, Balestrini R, Kohler A, Abbà S, Martin F, Bonfante P (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48:585–591

    Article  CAS  PubMed  Google Scholar 

  • Zhao M-M, Zhang G, Zhang D-W, Hsiao Y-Y, Guo S-X (2013) ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PLoS One 8:e72705. doi:10.1371/journal.pone.0072705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Emilie Tisserant (INRA, France) for help with MIRA assembly of the transcriptomic sequences. MiR was supported by the Progetto Lagrange (Fondazione CRT), FS and EE by PhD MIUR fellowships. We acknowledge partial funding by the Italian MIUR (PRIN2007), IPP-CNR and local funding by University of Turin. The UMR1136 is supported by a grant overseen by the French National Research Agency (ANR) as part of the: “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Perotto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2014_2062_MOESM1_ESM.tif

Supplementary material 1 (TIFF 3174 kb) Fig. S1 Gene Ontology assignments for S. vomeracea transcripts. Level 3 annotations are shown for the biological process and cellular component graphs, and level 2 annotations for the molecular function graph

425_2014_2062_MOESM2_ESM.tif

Supplementary material 2 (TIFF 3174 kb) Fig. S2 Phylogenetic relationships of plant serine carboxipeptidases-like (SCPL) proteins based on amino acid deduced sequences. The sequences were aligned using Muscle and the unrooted tree was constructed using maximum likelihood. Characterized SCPL with acyltransferase activity from Arabidopsis and Oryza sativa are included in the tree and form a separate cluster. Characterized SCPL acyltransferase enzymes included in the tree are also from Avena sativa (ACT21078_SCPL1) and Brassica napus (AAQ91191_SCT). Characterized serine carboxypeptidase sequences from Hordeum vulgare were included (Hv, P07519_SCPI and P2159.2_SCPIII), in addition to sequences from Vitis vinifera (Vv, XP_002264454), Ricinus communis (Rc, XP_002527263) and Medicago truncatula MtSCP1 (Mt, XP_003592239). Numbers indicate bootstrap values and are indicated only when ≥ 50 %. Arrows point to the S. vomeracea sequence (SvWound3)

Supplementary material 3 (XLS 5022 kb)

Supplementary material 4 (DOC 66 kb)

Supplementary material 5 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perotto, S., Rodda, M., Benetti, A. et al. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. Planta 239, 1337–1349 (2014). https://doi.org/10.1007/s00425-014-2062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2062-x

Keywords

Navigation