Skip to main content

Advertisement

Log in

Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Mutualistic symbioses between plants and fungi are a widespread phenomenon in nature. Particularly in orchids, association with symbiotic fungi is required for seed germination and seedling development. During the initial stages of symbiotic germination, before the onset of photosynthesis, orchid protocorms are fully mycoheterotrophic. The molecular mechanisms involved in orchid symbiotic germination and development are largely unknown, but it is likely that changes in plant energy metabolism and defense-related responses play a central role in these processes. We have used 2D-LC-MS/MS coupled to isobaric tagging for relative and absolute quantification to identify proteins with differential accumulation in Oncidium sphacelatum at different stages of mycorrhizal protocorm development (achlorophyllous and green protocorms) after seed inoculation with a Ceratobasidium sp. isolate. We identified and quantified 88 proteins, including proteins putatively involved in energy metabolism, cell rescue and defense, molecular signaling, and secondary metabolism. Quantitative analysis showed that the expected changes in carbon metabolism in green protocorms were accompanied by enhanced accumulation of proteins involved in the modulation of reactive oxygen species homeostasis, defense-related responses, and phytoalexins and carotenoid biosynthesis. Our results suggest profound metabolic changes in orchid protocorms during the switch from the fully mycoheterotrophic to the photosynthetic stage. Part of these changes may be also related to the obligatory nature of the interaction with the endomycorrhizal fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Aloui A, Recorbet G, Robert F, Schoefs B, Martine B (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol 11:75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arditti J (1992) Fundamentals of orchid biology. John Wiley & Sons, New Jersey

    Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:226

    Article  Google Scholar 

  • Beyrle HF, Smith SE, Peterson RL, Franco CMM (1995) Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses. Can J Bot 73:1128–1140

    Article  Google Scholar 

  • Blakeman JP, Mokahel MA, Hadley G (1976) Effect of mycorrhizal infection on respiration and activity of some oxidase enzymes of orchid protocorms. New Phytol 77:697–704

    Article  CAS  Google Scholar 

  • Blilou I, Bueno P, Ocampo JA, García-Garrido JMG (2000) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104:722–725

    Article  CAS  Google Scholar 

  • Bouvier F, Isner J-C, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygen as signals for controlling cross tolerance. Trends Plant Sci 5:241–246

    Article  CAS  PubMed  Google Scholar 

  • Burnette RN, Gunesekera BM, Gillaspy GE (2003) An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol 132:1011–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green‐leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lin W-H, Wang Y, Luan S, Hong-Wei X (2008) An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+. Plant Cell 20:353–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danna CH, Bartoli CG, Sacco F, Ingala LR, Santa-Maria GE, Guiamet JJ, Ugalde RA (2003) Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiol 132:2116–2125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danson J, Wasano K, Nose A (2000) Infection of rice plants with the sheath blight fungus causes an activation of pentose phosphate and glycolytic pathways. Eur J Plant Pathol 106:555–561

    Article  CAS  Google Scholar 

  • Dearnaley JDW, Martos F, Selosse MA (2012) 12 Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal Associations, vol 9, The Mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, Heidelberg, pp 207–230

    Chapter  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216:148–154

    Article  CAS  PubMed  Google Scholar 

  • Fisch MH, Flick BH, Arditti J (1973) Structure and antifungal activity of hircinol, loroglossol and orchinol. Phytochemistry 12:437–441

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fracetto GGM, Peres LEP, Mehdy MC, Lambais MR (2013) Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis 60:155–167

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:81–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930

    Article  CAS  Google Scholar 

  • Gonzáles-García V, Onco MAP, Susan VR (2006) Review. Biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79

    Article  Google Scholar 

  • Gusui W, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368

    Google Scholar 

  • Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Herbrich SM, Cole RN, West KP et al (2013) Statistical inference from multiple iTRAQ experiments without using common reference standards. J Proteome Res 12:594–604

    Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo JA, García-Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hesberg C, Hänsch R, Mendel RR, Bittner F (2004) Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities. J Biol Chem 279:13547–13554

    Article  CAS  PubMed  Google Scholar 

  • Hill EG, Schwacke JH, Comte-Walters S et al (2008) A statistical model for iTRAQ data analysis research articles. J Proteome Res 7:3091–3101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iqbal N, Na K, Nazar R, Silva JA (2012) Ethylene-stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity. Environ Exp Bot 78:84–90

    Article  CAS  Google Scholar 

  • Kende H, Zeevaart JAD (1997) The five classical plant hormones. Plant cell 9:1197–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klingner A, Bothe H, Wray V, Marner F (1995) Identification of a yellow pigment formed in maize roots. Ecol Biochem 38:53–55

    CAS  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344

    Article  CAS  PubMed  Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambais MR, Rios-Ruiz WF, Andrade RM (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol 160:421–428

    Article  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319–1330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Martín-Rodríguez J, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205

    Article  PubMed  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mutuku JM, Nose A (2012) Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway. Plant Cell Physiol 53:1017–1032

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4:1419–1440

    Article  CAS  PubMed  Google Scholar 

  • Otero JT, Bayman P, Ackerman JD (2005) Variation in mycorrhizal performance in the epiphytic orchid Tolumnia variegata in vitro: the potential for natural selection. Evol Ecol 29–43

  • Pais MS, Barroso J (1983) Localization of polyphenol oxidases during establishment of Ohrys lutea endomycorrhizas. New Phytol 95:219–222

    Article  Google Scholar 

  • Pauly N, Pucciariello C, Mandon K, Innocenti G, Jamet A, Frendo P, Puppo A (2006) Reactive oxygen and nitrogen species and glutathione : key players in the legume—Rhizobium symbiosis. J Exp Bot 57:1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Penmetsa RV, Uribe P, Anderson J et al (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    Article  CAS  PubMed  Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Métraux J-P, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira OL, Kasuya MCM, Rollemberg CDL, Borges AC (2005) Indução in vitro da germinação de sementes de Oncidium flexuosum (Orchidaceae) por fungos micorrízicos rizoctonióides. Rev Bras Ciênc Solo 29:199–206

    Article  Google Scholar 

  • Peterson RL, Uetake Y, Bonfante P, Faccio A (1996) The interface between fungal hyphae and orchid protocorm cells. Can J Bot 74:1861–1870

    Article  Google Scholar 

  • Peterson RL, Uetake Y, Zelmer C (1998) Fungal symbiosis with orchid protocorms. Symbiosis 25:29–55

    Google Scholar 

  • Rasmussen H, Rasmussen FN (2007) Trophic relationship in orchid mycorrhiza—diversity and implication for conservation. Lankesteriana 7:334–341

    Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Recorbet G, Rogniaux H, Gianinazzi-Pearson V, Dumas-Gaudot E (2009) Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. New Phytol 181:248–260

    Article  CAS  PubMed  Google Scholar 

  • Reinecke T, Kindl H (1994) Inducible enzymes of the 9,10-dihydro-phenanthrene pathway. Sterile orchid plants responding to fungal infection. Mol Plant Microbe 7:449–454

    Article  CAS  Google Scholar 

  • Riedel T, Groten K, Baldwin IT (2008) Symbiosis between Nicotiana attenuata and Glomus intraradices: Ethylene plays a role, jasmonic acid does not. Plant Cell Environ 31:1203–1213

    Article  CAS  PubMed  Google Scholar 

  • Roberts NJ, Morieri G, Kalsi G et al (2013) Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol 161:556–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 14:5539–5545

    Article  Google Scholar 

  • Sagi M, Fluhr R, Lips S (1999) Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol 120:571–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salzer P, Corbiere H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schenkluhn L, Hohnjec N, Niehaus K, Schmitz U, Colditz F (2010) Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. J Proteome 73:753–768

    Article  CAS  Google Scholar 

  • Selosse M-A, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Matsuura M, Takada N, Koda Y (2007) An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae). Phytochemistry 68:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee CH, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci 106:7660–7665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • The plant list (2010). Version 1: http://www.theplantlist.org, Accessed 15 Jan 2013.

  • Tholen D, Pons TL, Voesenek LACJ, Poorter H (2007) Ethylene insensitivity results in down-regulation of rubisco expression and photosynthetic capacity in tobacco. Plant Physiol 144:1305–1315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomma BPHJ, Penninckx IA, Broekaert WF (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  CAS  PubMed  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Uetake Y, Peterson LR (1996) Changes in actin filament arrays in protocorm cells of the orchid species, Spiranthes sinensis, induced by the symbiotic fungus Ceratobasidium cornigerum. Can J Bot 75:1661–1669

    Article  Google Scholar 

  • Valadares RB, Pereira MC, Otero JT, Cardoso EJ (2012) Narrow fungal mycorrhizal diversity in a population of the orchid Coppensia doniana. Biotropica 44:114–122

    Article  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradices) induces a defense response in alfalfa roots. Plant Physiol 104:683–689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volpin H, Phillips DA, Okon Y, Kapulnik Y (1995) Suppression of an isoflavonoid phytoalexin defense response. Plant Physiol 108:1449–1454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the “yellow pigment” and other apocarotenoids. Plant J 21:571–578

    Article  CAS  PubMed  Google Scholar 

  • Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Freitas MA (2009) MassMatrix: a database search program for rapid characterization of proteins and peptides from tandem mass spectrometry data. Proteomics 9:1548–1555

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876

    Article  CAS  PubMed  Google Scholar 

  • Zarepour M, Kaspari K, Stagge S, Rethmeier R, Mendel RR, Bittner F (2010) Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a potent producer of superoxide anions via its NADH oxidase activity. Plant Mol Biol 72:301–310

    Article  CAS  PubMed  Google Scholar 

  • Zettler LW (1997) Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana 18:188–194

    Google Scholar 

  • Zettler LW, Hofer CJ (1998) Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environ Exp Bot 39:189–195

    Article  Google Scholar 

  • Zhao M-M, Zhang G, Zhang D-W, Hsiao Y-Y, Guo S-X (2013) ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PloS One 8:e72705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zsögön A, Lambais MR, Benedito VA, Figueira AVO, Peres LEP (2008) Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Sci Agric 65:259–267

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). RBSV and ECS were supported by FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Lambais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valadares, R.B.S., Perotto, S., Santos, E.C. et al. Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 24, 349–360 (2014). https://doi.org/10.1007/s00572-013-0547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0547-2

Keywords

Navigation