Skip to main content

Advertisement

Log in

Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow marine water in the immediate aftermath of the end-Permian mass extinction

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Rapid and profound changes in earth surface environments and biota across the Permian–Triassic boundary are well known and relate to the end-Permian mass extinction event. This major crisis is demonstrated by abrupt facies change and the development of microbialite carbonates on the shallow marine shelves around Palaeo-Tethys and western Panthalassa. Microbialites have been described from a range of sites in end-Permian and basal Triassic marine sedimentary rocks, immediately following the end-Permian mass extinction. Here, we present geochemical data primarily focused on microbialites. Our geochemical analysis shows that U, V, Mo and REE (Ce anomaly) may be used as robust redox proxies so that the microbialites record the chemistry of the ancient ambient sea water. Among the three trace metals reputed to be reliable redox proxies, one (V) is correlated here with terrigenous supply, the other two elements (U and Mo) do not show any significant authigenic enrichment, thereby indicating that oxic conditions prevailed during the growth of microbialites. REE profiles show a prominent negative Ce anomaly, also showing that the shallow marine waters were oxic. Our geochemical data are consistent with the presence of some benthic organisms (ostracods, scattered microgastropods, microbrachiopods and foraminifers) in shallow marine waters that survived the mass extinction event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales in upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318

    Article  Google Scholar 

  • Algeo TJ, Rowe H (2012) Paleoceanographic applications of trace-metal concentration data. Chem Geol 324–325:6–18

    Article  Google Scholar 

  • Algeo TJ, Tribovillard N (2009) Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem Geol 268:211–225

    Article  Google Scholar 

  • Algeo TJ, Ellwood B, Thi K, Nguyen T, Rowe H, Maynard B (2007a) The Permian–Triassic boundary at Nhi Tao, Vietnam: evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeogr Palaeoclimatol Palaoecol 252:304–327

    Article  Google Scholar 

  • Algeo TJ, Hannigan R, Rowe H, Brookfield M, Baud A, Krystyn L, Ellwood B (2007b) Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeogr Palaeoclimatol Palaoecol 252:328–346

    Article  Google Scholar 

  • Algeo TJ, Hinnov L, Moser J, Maynard JB, Elswick E, Kuwahara K, Sano H (2010) Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38:187–190

    Article  Google Scholar 

  • Algeo TJ, Kuwahara JB, Sano H, Bates S, Lyons T, Elswick E, Hinnov L, Ellwood B, Moser J, Maynrad JB (2011) Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–triassic Panthalassic ocean. Palaeogeogr Palaeoclimatol Palaoecol 308:65–83

    Article  Google Scholar 

  • Banner JL, Hanson GN, Meyers WJ (1988) Rare earth elements and Nd isotopic variations in regionally extensive dolomites from Burlington–Keokuk formation (Mississipian): implications for REE mobility during carbonate diagenesis. J Sediment Pet 58:415–432

    Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South-Africa. Precambrian Res 79:37–55

    Article  Google Scholar 

  • Baud A, Holser WT, Magaritz M (1989) Permian-Triassic of the Tethys: carbon isotopes studies. Geol Rundsch 78:649–677

    Article  Google Scholar 

  • Baud A, Richoz S, Marcoux J (2005) Calcimicrobial cap rocks from the basal Triassic units: western Taurus occurrences (SW Turkey). C R Palevol 4:569–582

    Article  Google Scholar 

  • Bond DPG, Wignall PB (2010) Pyrite framboids study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bull 122:1265–1279

    Article  Google Scholar 

  • Bottrell SH, Newton RJ (2006) Reconstruction of changes in the global sulphur cycling from marine sulphate isotopes. Earth Sci Rev 75:59–83

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121

    Article  Google Scholar 

  • Brayard A, Vennin E, Olivier N, Bylund KG, Jenks J, Stephen DA, Bucher H, Hofmann R, Goudemand N, Escarguel G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat Geosci 4:693–697

    Article  Google Scholar 

  • Brumsack HJ (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaoecol 232:344–361

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Chappaz A, Lyons TW, Gregory DD, Reinhard CT, Gill BC, Li C, Large RR (2014) Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochim Cosmochim Acta 126:112–122

    Article  Google Scholar 

  • Collin PY, Kershaw S, Crasquin-Soleau S, Feng Q (2009) Facies changes across the Permian–Triassic boundary event horizon, Great Bank of Guizhou, South China: a controversy of erosion and dissolution. Sedimentology 56:677–693

    Article  Google Scholar 

  • Dolenec T, Lojen S, Ramovs A (2001) The Permian–Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations. Chem Geol 175:175–190

    Article  Google Scholar 

  • Erwin DH (2006) Extinction: How life on earth nearly died 250 million years ago. Princeton University Press, Princeton

    Google Scholar 

  • Ezaki Y, Liu J, Adachi N (2003) Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, south China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios 18:388–402

    Article  Google Scholar 

  • Fenton S, Grice K, Twitchett RJ, Böttcher ME, Looy CV, Nabbefeld B (2007) Changes in biomarker abundances and sulfur isotopes of pyrite across the Permian–Triassic (P/Tr) Schuchert Dal section (East Greenland). Earth Planet Sci Lett 262:230–239

    Article  Google Scholar 

  • Forel MB, Crasquin S, Kershaw S, Feng Q, Collin PY (2009) Early Triassic ostracods (Crustacea) associated with microbialites in South China. Aust J Earth Sci 56:815–823

    Article  Google Scholar 

  • Forel MB, Crasquin S, Kershaw S, Collin PY (2013) In the aftermath of the end-Permian extinction: the microbialite refuge. Terra Nova 25:137–143

    Article  Google Scholar 

  • Golonka J (2002) Plate-tectonic maps of the Phanerozoic. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic Reef Patterns. SEPM Spec. Publ., vol 72. Tulsa, pp 21–76

  • Grasby SE, Sanei H, Beauchamp B, Chen ZH (2013) Mercury deposition through the Permo–Triassic Biotic Crisis. Chem Geol 351:209–216

    Article  Google Scholar 

  • Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005) Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706–709

    Article  Google Scholar 

  • Haas J, Demény A, Hips K, Zajzon N, Weiszburg T, Sudar M, Pálfy J (2007) Biotic and environmental changes in the Permian–Triassic boundary interval recorded on a western Tethyan ramp in the Bükk Mountains, Hungary. Glob Planet Change 55:136–154

    Article  Google Scholar 

  • Hautmann M, Bucher H, Brühwiler T, Goudemand T, Kaim A, Nützel A (2011) An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44:71–85

    Article  Google Scholar 

  • He L, Wang Y, Woods A, Li G, Yang H, Liao W (2013) An oxygenation event occurred in deep shelf settings immediately after the end-Permian mass extinction in South China. Glob Planet Change 101:72–81

    Article  Google Scholar 

  • Hips K, Haas J (2006) Calcimicrobial stromatolites at the Permian–Triassic boundary in a western Tethyan section, Bükk, Hungary. Sediment Geol 185:239–253

    Article  Google Scholar 

  • Hotinski RM, Bice KL, Kump LR, Najjar RG, Arthur MA (2001) Ocean stagnation and end-Permian anoxia. Geology 29:7–10

    Article  Google Scholar 

  • Ishiga H, Ishida K, Dozen K, Musashino M (1996) Geochemical characteristic of pelagic chert sequences across the Permian–Triassic boundary in southwest Japan. Isl Arc 5:180–193

    Article  Google Scholar 

  • Isozaki Y (1997) Permo-Triassic superanoxia and stratified superocean: records from the lost deep sea. Science 276:235–238

    Article  Google Scholar 

  • Kajiwara Y, Yamakita S, Ishida K, Ishiga H, Imai A (1994) Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record. Palaeogeogr Palaeoclimatol Palaoecol 111:367–379

    Article  Google Scholar 

  • Kakuwa Y (2008) Evaluation of palaeo-oxygenation of the ocean bottom across the Permian-Triassic boundary. Glob Planet Change 63:40–56

    Article  Google Scholar 

  • Kakuwa Y, Matsumoto R (2006) Cerium negative anomaly just before the Permian and Triassic boundary event—the upward expansion of anoxia in the water column. Palaeogeogr Palaeoclimatol Palaoecol 229:335–344

    Article  Google Scholar 

  • Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Z Deutsch Geol Ges 60:68–125

    Google Scholar 

  • Kamber BS, Webb G (2001) The geochemistry of late Archean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525

    Article  Google Scholar 

  • Kato Y, Nakao K, Isozaki Y (2002) Geochemistry of Late Permian to Early Triassic pelagic chert from southwest Japan: implications for an oceanic redox change. Chem Geol 182:15–34

    Article  Google Scholar 

  • Kershaw S, Li Y, Crasquin-Soleau S, Feng Q, Mu X, Collin PY, Reynolds A, Guo L (2007) Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution. Facies 53:409–425

    Article  Google Scholar 

  • Kershaw S, Crasquin S, Forel MB, Randon C, Collin PY, Kosun E, Richoz S, Baud A (2011) Earliest Triassic microbialites in Cürük Dag, southern Turkey: composition, sequences and controls on formation. Sedimentology 58:739–755

    Article  Google Scholar 

  • Kershaw S, Crasquin S, Li Y, Collin PY, Forel MB, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10:25–47

    Article  Google Scholar 

  • Kidder DL, Worsley TR (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaoecol 203:207–237

    Article  Google Scholar 

  • Kiehl JT, Shields CA (2005) Climate simulation of the latest 382 Permian: implications for mass extinction. Geology 33:757–760

    Article  Google Scholar 

  • Knoll AH, Bambach RK, Canfield DE, Grotzinger JP (1996) Comparative earth history and Late Permian mass extinction. Science 273:452–457

    Article  Google Scholar 

  • Kozur H, Pjatakova M (1976) Die Conodontenart Anchignathodus parvis n. sp. eine wichtige Leitform der basalen Trias. In: Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen. Series B: Physical Sciences 79:123–128

  • Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfid to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397–400

    Article  Google Scholar 

  • Lehrmann DJ (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology 27:359–362

    Article  Google Scholar 

  • Lehrmann DJ, Payne JL, Felix SV, Dillett PM, Wang H, Yu Y, Wei J (2003) Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, south China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios 18:138–152

    Article  Google Scholar 

  • Liao W, Yang W, Kershaw S, Weng Z, Yang H (2010) Shallow-marine dysoxia across the Permian–Triassic boundary: evidence fron pyrite framboids in the microbialites in South China. Sediment Geol 232:77–83

    Article  Google Scholar 

  • Luo G, Wang Y, Grice K, Kershaw S, Ruan X, Algeo TJ, Yang H, Jia C, Xie S (2013) Microbial-algal community changes during the latest Permian ecological crisis: evidence from lipid biomarkers at Cili, South China. Glob Planet Change 105:36–51

    Article  Google Scholar 

  • Meyer KM, Yu M, Lehrmann D, Van de Schootbrugge B, Payne JL (2013) Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records. Earth Planet Sci Lett 361:429–435

    Article  Google Scholar 

  • Mu X, Kershaw S, Li Y, Guo L, Qi Y, Reynolds A (2009) High-resolution carbon isotope changes in the Permian–Triassic boundary interval, Chongqing, South China; implications for control and growth of earliest Triassic microbialites. J Asian Earth Sci 36:434–441

    Article  Google Scholar 

  • Nan J, Congqiang L, Dequan Z, Zhuming W (2002) REE geochemical study of the Permian–Triassic marine sedimentary environment in Guizhou Province. Chin J Geochem 21:348–361

    Article  Google Scholar 

  • Négrel P, Casanova J, Bruhlet J (2006) REE and Nd isotope stratigraphy of the Late Jurassic carbonate platform, eastern Paris Basin, France. J Sediment Res 76:605–617

    Article  Google Scholar 

  • Nielsen JK, Shen Y, Piasecki S, Stemmerik L (2010) No abrupt change in redox condition caused the end-Permian marine ecosystem collapse in the East Greenland Basin. Earth Planet Sci Lett 291:32–38

    Article  Google Scholar 

  • Olivier N, Boyet M (2006) Rare-earth and trace elements of microbialites in Upper Jurassic coral- and sponge-microbialite reefs. Chemi Geol 230:105–123

    Article  Google Scholar 

  • Osen A, Winguth AME, Winguth C, Scotese CR (2013) Sensitivity of the Late Permian climate to bathymetric features and implications for the mass extinction. Glob Planet Change 105:170–178

    Article  Google Scholar 

  • Payne JL, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509

    Article  Google Scholar 

  • Proemse BC, Grasby SE, Wieser ME, Mayer B, Beauchamp B (2013) Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology 41:967–970

    Article  Google Scholar 

  • Riccardi AL, Arthur LA, Kump LR (2006) Sulfur isotopic evidence for chemocline upward excursion during the end-Permian mass extinction. Geochim Cosmochim Acta 70:5740–5752

    Article  Google Scholar 

  • Richoz S (2004) Stratigraphie et variations isotopique du carbone dans le Permien supérieur et le Trias inférieur de la Néotéthys (Turquie, Oman et Iran). PhD Thesis, Lausanne University, Switzerland

  • Rickard D (2012) Sulfidic sediments and sedimentary rock. Developments in Sedimentology, vol 65. Elsevier, Amsterdam, p 801

    Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214

    Article  Google Scholar 

  • Riding R (2008) A biogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol Croat 61:73–103

    Google Scholar 

  • Schoepfler SD, Henderson CM, Garrison GH, Ward PD, Foriel J, Selby D, Hower JC, Algeo TJ, Shen Y (2013) Termination of a continental-margin up-welling system at the Permian–Triassic boundary (Opal Creek, Alberta, Canada). Glob Planet Change 105:21–35

    Article  Google Scholar 

  • Shields GA, Webb GE (2004) Has the REE composition of seawater changed over geological time? Chem Geol 204:103–107

    Article  Google Scholar 

  • Song HG, Wignall PB, Chen ZQ, Tong JN, Bond DPG, Lai XL, Zhao XM, Jiang HS, Yan CB, Nin ZJ, Chen J, Yang H, Wang YB (2011) Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39:739–742

    Article  Google Scholar 

  • Song H, Wignall PB, Tong J, Yin H (2013) Two pulses of extinction during the Permian–Triassic crisis. Nat Geosci 6:52–56

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons TW, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Tribovillard N, Lyons TW, Riboulleau A, Bout-Roumazeilles V (2008) A possible capture of molybdenum during early diagenesis of dysoxic sediments. Bull Soc Geol Fr 179:3–12

    Article  Google Scholar 

  • Tribovillard N, Algeo TJ, Baudin F, Riboulleau A (2012) Analysis of marine environmental conditions based on molybdenum–uranium covariation—Applications to Mesozoic paleoceanography. Chem Geol 324–325:46–58

    Article  Google Scholar 

  • Van der Weijden CH (2002) Pitfalls of normalization of marine geochemical data using a common divisor. Mar Geol 184:167–187

    Article  Google Scholar 

  • Wang Y, Tong J, Wang J, Zhou X (2005) Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chin Sci Bull 50:665–671

    Article  Google Scholar 

  • Webb G, Kamber BS (2000) Rare earth elements in Holocene 432 reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565

    Article  Google Scholar 

  • Weidlich O, Bernecker M (2007) Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms. Glob Planet Change 55:209–235

    Article  Google Scholar 

  • Weidlich O, Kiessling W, Flügel E (2003) Permian–Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. Geology 31:961–964

    Article  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaoecol 93:21–46

    Article  Google Scholar 

  • Wignall PB, Hallam A (1993) Griesbachian (earliest Triassic) palaeoenvironmental changes in the salt range, Pakistan and southern China and their bearing on the Permo-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaoecol 102:215–237

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (2002) Extent, duration and nature of the Permian–Triassic superanoxic event. Geol Soc Am Spec Publ 356:395–413

    Google Scholar 

  • Wignall PB, Morante R, Newton R (1998) The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geol Mag 135:47–62

    Article  Google Scholar 

  • Wignall PB, Newton R, Brookfield ME (2005) Pyrite framboid evidence for oxygen poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeogr Palaeoclimatol Palaoecol 216:183–188

    Article  Google Scholar 

  • Wignall PB, Bond DPG, Kuwahara K, Kakuwa Y, Newton RJ, Poulton SW (2010) An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Temba terrane, SW Japan, and the origin of four mass extinctions. Glob Planet Change 71:109–123

    Article  Google Scholar 

  • Winguth AME, Winguth C (2013) Precession-driven monsoon variability at the Permian–Triassic boundary—implications for anoxia and the mass extinction. Glob Planet Change 105:159–169

    Article  Google Scholar 

  • Wright J, Schrader H, Holser WT (1987) Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim Cosmochim Acta 51:631–644

    Article  Google Scholar 

  • Xie S, Pancost RD, Yin H, Wang H, Evershad RP (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494–497

    Article  Google Scholar 

  • Yang H, Chen ZQ, Wang Y, Tong J, Song H, Chen J (2011) Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeogr Palaeoclimatol Palaeoecol 308:111–128

    Article  Google Scholar 

  • Yin H, Wu S, Ding M, Zhang K, Tong J, Yang F, Lai X (1996) The Meishan section, candidate of the global stratotype section and point of Permian–Triassic boundary. In: Yin HF (ed) The Paleozoic–Mesozoic boundary candidates of the global stratotype section and point of the Permian–Triassic boundary. China University of Geosciences Press, Wuhan, pp 31–48

    Google Scholar 

  • Yin H, Zhang K, Tong J, Yang Z, Wu S (2001) The global stratotype section and point of the Permian–Triassic boundary (GSSP). Episodes 24:102–114

    Google Scholar 

  • Zaho L, Chen ZQ, Algeo TJ, Chen JP, Chen YL, Tong JN, Gao S, Zhou L, Hu Z, Liu YS (2013) Rare-earth element patterns in conodont albid crowns: evidence for massive inputs of volcanic ash during the latest Permian biocrisis? Glob Planet Change 105:135–150

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Lethiers, F. Delbès, A. Michel and B. Villemant for technical support. The authors thank Q. Feng, J. Haas, K. Hips and Erdal Kosun for their help in the field. This paper is a contribution to IGCP 572 “Restoration of marine ecosystems following the Permian–Triassic mass extinction: lessons for the present”. K. Föllmi and an anonymous reviewer are thanked for their constructive suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Collin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collin, P.Y., Kershaw, S., Tribovillard, N. et al. Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow marine water in the immediate aftermath of the end-Permian mass extinction. Int J Earth Sci (Geol Rundsch) 104, 1025–1037 (2015). https://doi.org/10.1007/s00531-014-1125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1125-3

Keywords

Navigation