Skip to main content
Log in

Carbon isotopes, sulfur isotopes, and trace elements of the dolomites from the Dengying Formation in Zhenba area, southern Shaanxi: Implications for shallow water redox conditions during the terminal Ediacaran

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Carbon isotope, sulfur isotope, and trace element (including Rare Earth Elements, REE) analyses were conducted on the carbonates of the Dengying Formation at Lianghekou section in southern Shaanxi to reconstruct the terminal Ediacaran shallow-water environment on the northwestern margin of the Yangtze Platform. At Lianghekou section, samples in the middle 50-m of the Beiwan Member show characteristics of low ΣREE concentrations, no MREE-enriched REE distribution patterns, high Ce/Ce* values close to 1, and enriched redox-sensitive elements, whereas samples in the lower 30-m and upper 10-m show opposite characteristics of high ΣREE concentrations, MREE-enriched REE distribution patterns, low Ce/Ce* values around 0.6, and no redox-sensitive elements enriched, indicating that oxygenation did occur in the shallow water on the northwestern margin of the Yangtze Platform and redox conditions of the shallow water fluctuated from relatively oxygenated to anoxic and then back to oxygenated again. We propose that the anoxia appeared in middle of the Beiwan time may associate with the anoxic upwelled water. On one hand, abundant nutrients were brought in by this upwelling event, which stimulated the photosynthetic carbon fixation and increased the organic carbon burial under this anoxic condition, causing a peak of 3.6‰ in γ 13C. On the other hand, because the anoxic upwelled water replaced the oxic shallow water, together with the increasing organic matter in the water column, bacterial sulfate reduction was enhanced and therefore quickly reduced the sulfate concentration, which eventually caused γ 34S increasing to 50‰. However, as the upwelling gradually disappeared, γ 13C and γ 34SCAS values decreased as well in the late Beiwan time, indicating the shallow water went back to suboxic or oxic again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addy S K. 1979. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic. Geochim Cosmochim Acta, 43: 1105–1115

    Article  Google Scholar 

  • Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Acta, 63: 363–372

    Article  Google Scholar 

  • Banner J L, Hanson G N, Meyers W J. 1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis. J Sediment Res, 58: 415–432

    Article  Google Scholar 

  • Berkner L V, Marshall L. 1965. On the origin and rise of oxygen concentration in the Earth’s atmosphere. J Atmos Sci, 22: 225–261

    Article  Google Scholar 

  • Bowring S A, Grotzinger J P, Condon D J, et al. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 307: 1097–1145

    Article  Google Scholar 

  • Bureau of Geology and Mineral Resources of Shaanxi Province. 1989. Regional geology of Shaanxi province (in Chinese). Beijing: Geological Publishing House. 1–698

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Shaanxi Province. 1998. Multiple Classification and Correlation of the Stratigraphy of China: Stratigraphy (Lithostratic) of Shaanxi Province (in Chinese). Wuhan: China University of Geosciences Press. 1–291

    Google Scholar 

  • Burdett J W, Arthur M A, Richardson M. 1989. A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils. Earth Planet Sci Lett, 94: 189–198

    Article  Google Scholar 

  • Byrne R, Sholkovitz E R. 1996. Marine chemistry and geochemistry of the lanthanides. In: Gschneidner K A, Eyring L, eds. Handbook on the Physics and Chemistry of Rare Earth. Amsterdam: Elsevier. 497–593

    Google Scholar 

  • Cai Y, Hua H, Xiao S, et al. 2010. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposits. Palaios, 25: 487–506

    Article  Google Scholar 

  • Calvert S E, Pedersen T F. 1993. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar Geol, 113: 67–88

    Article  Google Scholar 

  • Chen Z, Zhou C, Xiao S, et al. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci Rep, 4: 4180

    Google Scholar 

  • Chu X L, Zhang Q R, Zhang T G, et al. 2003. Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China. Prog Nat Sci, 13: 875–880

    Article  Google Scholar 

  • Cloud P E. 1968. Atmospheric and Hydrospheric Evolution on the Primitive Earth Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. Science, 160: 729–736

    Article  Google Scholar 

  • Condon D, Zhu M, Bowring S, et al. 2005. U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science, 308: 95–98

    Article  Google Scholar 

  • Derry L A, Brasier M D, Corfield R M, et al. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth Planet Sci Lett, 128: 671–681

    Article  Google Scholar 

  • Dulski P. 1994. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresen J Anal Chem, 350: 194–203

    Article  Google Scholar 

  • Fike D, Grotzinger J, Pratt L, et al. 2006. Oxidation of the Ediacaran ocean. Nature, 444: 744–747

    Article  Google Scholar 

  • Filipek L H, Owen R M. 1981. Diagenetic controls of phosphorus in outer continental-shelf sediments from the Gulf of Mexico. Chem Geol, 33: 181–204

    Article  Google Scholar 

  • Gellatly A M, Lyons T W. 2005. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution. Geochim Cosmochim Acta, 69: 3813–3829

    Article  Google Scholar 

  • German C R, Holliday B P, Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim Cosmochim Acta, 55: 3553–3558

    Article  Google Scholar 

  • Gill B C, Lyons T W, Frank T D. 2008. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy. Geochim Cosmochim Acta, 72: 4699–4711

    Article  Google Scholar 

  • Guo Q, Shields G A, Liu C, et al. 2007. Trace element chemostratigraphy of two Ediacaran–Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Paleogeogr Paleoclimatol Paleoecol, 254: 194–216

    Article  Google Scholar 

  • Hild E, Brumsack H J. 1998. Major and minor element geochemistry of Lower Aptian sediments from the NW German Basin (core Hohenegglesen KB 40). Cretaceous Res, 19: 615–633

    Article  Google Scholar 

  • Hua H, Chen Z, Yuan X, et al. 2005. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 33: 277–280

    Article  Google Scholar 

  • Huang J, Chu X, Jiang G, et al. 2011. Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate. J Geol Soc London, 168: 805–816

    Article  Google Scholar 

  • Huang J, Chu X, Lyons T W, et al. 2013. The sulfur isotope signatures of Marinoan deglaciation captured in Neoproterozoic shallow to deep cap carbonate from South China. Precambrian Res, 238: 42–51

    Article  Google Scholar 

  • Hurtgen M T, Arthur M A, Suits N S, et al. 2002. The sulfur isotopiccomposition of Neoproterozoic seawater sulfate: Implications for a snowball Earth? Earth Planet Sci Lett, 203: 413–429

    Article  Google Scholar 

  • Jiang G, Kaufman A J, Christie-Blick N, et al. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean ?? 13C gradient. Earth Planet Sci Lett, 261: 303–320

    Article  Google Scholar 

  • Kah L C, Lyons T W, Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431: 834–838

    Article  Google Scholar 

  • Kampschulte A, Strauss H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol, 204: 255–286

    Article  Google Scholar 

  • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 73: 27–49

    Article  Google Scholar 

  • Knoll A H. 2003. Biomineralization and evolutionary history. Rev Mineral Geochem, 54: 329–356

    Article  Google Scholar 

  • Krom M D, Berner R A. 1981. The diagenesis of phosphorus in a nearshore marine sediment. Geochim Cosmochim Acta, 45: 207–216

    Article  Google Scholar 

  • Lambert I, Walter M, Wenlong Z, et al. 1987. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 325: 140–142

    Article  Google Scholar 

  • Lawrence M G, Greig A, Collerson K D, et al. 2006. Rare earth element and yttrium variability in South East Queensland waterways. Aquat Geochem, 12: 39–72

    Article  Google Scholar 

  • Li G X. 2004. Early Cambrian hyolithelminths-Torellella bisulcata sp. nov. from Zhenba, Southern Shaanxi (in Chinese). Acta Palaeontol Sin, 43: 571–578

    Google Scholar 

  • Li C, Love G D, Lyons T W, et al. 2010. A stratified redox model for the Ediacaran ocean. Science, 328: 80–83

    Article  Google Scholar 

  • Li D, Ling H F, Shields-Zhou G A, et al. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Res, 225: 128–147

    Article  Google Scholar 

  • Ling H F, Chen X, Li D, et al. 2013. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Res, 225: 110–127

    Article  Google Scholar 

  • Luo H L, Jiang Z W, Wu X C, et al. 1984. Sinian-Cambrian Boundary Stratotype Section in Meishucun, Jinning, Yunnan, China (in Chinese). Kunming: Yunnan Peopleseawater. Png House. 1–154

    Google Scholar 

  • Marshall J F. 1983. Geochemistry of iron-rich sediments on the outer continental shelf off northern New South Wales. Mar Geol, 51: 163–175

    Article  Google Scholar 

  • McFadden K A, Huang J, Chu X, et al. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci, 105: 3197–3202

    Article  Google Scholar 

  • McLennan S. 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem, 21: 169–200

    Google Scholar 

  • Morford J L, Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta, 63: 1735–1750

    Article  Google Scholar 

  • Nagender Nath B, Balaram V, Sudhakar M, et al. 1992. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Mar Chem, 38: 185–208

    Article  Google Scholar 

  • Newton R, Pevitt E, Wignall P, et al. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth Planet Sci Lett, 218: 331–345

    Article  Google Scholar 

  • Nothdurft L D, Webb G E, Kamber B S. 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta, 68: 263–283

    Article  Google Scholar 

  • Nursall J. 1959. Oxygen as a prerequisite to the origin of the Metazoa. Nature, 183: 1170–1172

    Article  Google Scholar 

  • Peng Y, Bao H, Pratt L, et al. 2014. Widespread contamination of carbonate- associated sulfate by present-day secondary atmospheric sulfate: Evidence from triple oxygen isotopes. Geology, 42: 815–818

    Article  Google Scholar 

  • Sarkar A, Sarangi S, Ebihara M, et al. 2003. Carbonate geochemistry across the Eocene/Oligocene boundary of Kutch, western India: Implications to oceanic O2-poor condition and foraminiferal extinction. Chem Geol, 201: 281–293

    Article  Google Scholar 

  • Schröder S, Grotzinger J. 2007. Evidence for anoxia at the Ediacaran- Cambrian boundary: The record of redox-sensitive trace elements and rare earth elements in Oman. J Geol Soc London, 164: 175–187

    Article  Google Scholar 

  • Shen Y, Zhang T, Chu X. 2005. C-isotopic stratification in a Neoproterozoic postglacial ocean. Precambrian Res, 137: 243–251

    Article  Google Scholar 

  • Shen Y. 2002. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Res, 113: 121–133

    Article  Google Scholar 

  • Shen Y, Schidlowski M. 2000. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology, 28: 623–626

    Article  Google Scholar 

  • Shen Y, Zhao R, Chu X, et al. 1998. The carbon and sulfur isotope signatures in the Precambrian-Cambrian transition series of the Yangtze Platform. Precambrian Res, 89: 77–86

    Article  Google Scholar 

  • Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem Geol, 175: 29–48

    Article  Google Scholar 

  • Takahashi Y, Shimizu H, Usui A, et al. 2000. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochim Cosmochim Acta, 64: 2929–2935

    Article  Google Scholar 

  • Tessier A, Campbell P G, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 51: 844–851

    Article  Google Scholar 

  • Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 232: 12–32

    Article  Google Scholar 

  • Wang W, Zhou C, Yuan X, et al. 2012. A pronounced negative ?? 13C excursion in an Ediacaran succession of western Yangtze Platform: A possible equivalent to the Shuram event and its implication for chemostratigraphic correlation in South China. Gondwana Res, 22: 1091–1101

    Article  Google Scholar 

  • Webb G E, Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta, 64: 1557–1565

    Article  Google Scholar 

  • Webb G E, Nothdurft L D, Kamber B S, et al. 2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology, 56: 1433–1463

    Article  Google Scholar 

  • Wotte T, Shields-Zhou G A, Strauss H. 2012. Carbonate-associated sulfate: Experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol. Chem Geol, 326: 132–144

    Article  Google Scholar 

  • Xiao S, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553–558

    Article  Google Scholar 

  • Yang J, Sun W, Wang Z, et al. 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: Evidence for the oxygenation of Neoproterozoic seawater? Precambrian Res, 93: 215–233

    Article  Google Scholar 

  • Yin J, He T, Li S, et al. 1993. Geological Evolution and Mineralization from the Surrounding Areas of Sichuan Basin and Its Vicinal Regions During the Sinian Subera. Chengdu: Press of Chengdu University of Science and Technology. 1–198

    Google Scholar 

  • Yin L, Zhu M, Knoll A H, et al. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661–663

    Article  Google Scholar 

  • Yuan X, Chen Z, Xiao S, et al. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390–393

    Article  Google Scholar 

  • Zhang L Y. 1986. A discovery and preliminary study of the late stage of late Gaojianshan Biota from Sinian in Ningqiang County, Shaaxi (in Chinese). Bull Xi’an Inst Geol Min Res, Chinese Acad Geol Sci, 13: 67–88

    Google Scholar 

  • Zhang P, Hua H, Liu W. 2014. Isotopic and REE evidence for the paleoenvironmental evolution of the late Ediacaran Dengying Section, Ningqiang of Shaanxi Province, China. Precambrian Res, 242: 96–111

    Article  Google Scholar 

  • Zhang T, Chu X, Zhang Q, et al. 2003. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic. Chin Sci Bull, 48: 1375–1380

    Article  Google Scholar 

  • Zhang T, Chu X, Zhang Q, et al. 2004. The sulfur and carbon isotopic records in carbonates of the Dengying Formation in Yangtze Platform,China (in Chinese). Acta Petrol Sin., 20: 717–724

    Google Scholar 

  • Zhou C, Xiao S. 2007. Ediacaran δ 13C chemostratigraphy of South China. Chem Geol, 237: 89–108

    Article  Google Scholar 

  • Zhou C, Jiang S, Xiao Si, et al. 2012. Rare earth elements and carbon isotope geochemistry of the Doushantuo Formation in South China: Implication for middle Ediacaran shallow marine redox conditions. Chin Sci Bull, 57: 1998–2006

    Article  Google Scholar 

  • Zhu M, Li G, Zhang J, et al. 2001. Early Cambrian stratigraphy of east Yunnan, southwestern China: A synthesis. Acta Palaeontol Sin, 40: 4–39

    Google Scholar 

  • Zhu M, Lu M, Zhang J, et al. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7–28

    Article  Google Scholar 

  • Zhu M, Zhang J. 2005. Ediacaran-Cambrian boundary sections and Early Cambrian Chengjiang nonmineralized fossils in eastern Yunnan Province southwestern China: Introduction. In: Peng S, Babcock L E, Zhu M, eds. Cambrian System of China and Korea. Hefei: University of Science and Technology of China Press. 1–12

    Google Scholar 

  • Zhu M, Zhang J, Yang A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Paleogeogr Paleoclimatol Paleoecol, 254: 7–61

    Article  Google Scholar 

  • Zhu M, Zhang J, Yang A, et al. 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: An integrated approach. Prog Nat Sci, 13: 951–960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueLei Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chu, X., Zhang, X. et al. Carbon isotopes, sulfur isotopes, and trace elements of the dolomites from the Dengying Formation in Zhenba area, southern Shaanxi: Implications for shallow water redox conditions during the terminal Ediacaran. Sci. China Earth Sci. 58, 1107–1122 (2015). https://doi.org/10.1007/s11430-015-5071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5071-0

Keywords

Navigation