Skip to main content
Log in

Episodic magmatism at the Permian/Triassic crisis boundary and its linkage to underlying source rocks: constraints from conodont-based high-resolution geochemical proxies in marine carbonate successions, South China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Frequent magmatism was a major event causing the mass extinction across the Permian/Triassic Boundary. In the current study, we determined magmatism characteristics from the Pingdingshan section at the Permian/Triassic Boundary using conodont-based geochemical proxies at a high-resolution scale (~ 50 kyr). Integrated trace elements (Mn, Sr, Rb, and Th) and stable/radioactive isotopes (δ18O, δ13C, and 87Sr/86Sr) revealed that conodonts provided an ideal proxy for chemostratigraphic signatures of ancient seawater. The conodont-based, high-resolution 87Sr/86Sr isotopes from the studied interval (250.50–252.00 Ma) displayed three decreasing cycles upwardly against a long-term increasing background, reflecting three episodes of magmatism. As a contrast, the conodont-based, high-resolution δ18O isotopes from this interval exhibited no episodic pattern, indicating that the δ18O isotopes of conodonts were limitedly influenced by marine magmatism. The high-resolution δ13C values of micrites displayed a pattern consistent with the trend of long-term background, revealing that the δ13C signatures of episodic magmatism were not inherited by micrites. The magmatism associated with the EPME event exerted great influences upon the Chihsian source rocks by introducing massive heat through hydrothermal fluids and causing pervasive oceanic anoxia.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Algeo TJ, Twitchett RJ (2010) Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38:1023–1026

    Article  Google Scholar 

  • Bertram CJ, Elderfield H, Aldrige RJ, Conway MS (1992) 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils. Earth Planet Sci Lett 13(1–2):239–249

    Article  Google Scholar 

  • Bjørlykke K, Mo A, Palm E (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar Pet Geol 5(4):338–351

    Article  Google Scholar 

  • Brand U, Veizer J (1980) Chemical diagenesis of multicomponent carbonate system-1: trace elements. J Sediment Pet 50:1219–1236

    Google Scholar 

  • Burgess SD, Bowring SA, Shen SZ (2014) High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA 111:3316–3321

    Article  Google Scholar 

  • Cao CQ, Love GD, Hays LE, Wang W, Shen SZ, Summons RE (2009) Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett 281:188–201

    Article  Google Scholar 

  • Chen JB (2015) Multi-geochemical proxies on the reconstruction of Early Triassic paleoceangraphic environments in the Chaohu Area (Anhui, South China) Doctoral Dissertation. China University of Geosciences, pp 1–90

  • Eren M, Kaplan MY, Kadir S (2007) Petrography geochemistry and origin of Lower Liassic dolomites in the Aydincik area (Mersin, Southern Turkey). Turk J Earth Sci 16(3):339–362

    Google Scholar 

  • Erwin DH (1993) The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York

    Google Scholar 

  • Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton Univ Press, New Jersy

    Google Scholar 

  • Hu G, Fang C, Wan D, Li Y, Chen S (2013) Geochemistry of bedded cherts in Three Gorges Region (Hubei Province) and its paleoenvironmental implications. Acta Geol Sin 87(9):1469–1476

    Google Scholar 

  • Hu T, Pang X, Jiang F, Zhang C (2022a) Dynamic continuous hydrocarbon accumulation (DCHA): existing theories and a new unified accumulation model. Earth-Sci Rev 232:104–109

    Article  Google Scholar 

  • Hu T, Pang X, Xu T, Li C (2022b) Identifying the key source rocks in heterogeneous saline lacustrine shales: paleogene shales in the Dongpu depression (Bohai Bay Basin, eastern China). AAPG Bull 106(6):1325–1356

    Article  Google Scholar 

  • Huang S (1990) Cathodoluminscence and diagenetic alternation of marine carbonate minerals. Sediment Geo Teth Geol 10(4):9–15

    Google Scholar 

  • Huang SJ, Qing HR, Huang PP, Hu ZW, Wang QD, Zou ML, Liu HN (2008) Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates in the Zhongliang Mountain (Chongqing, China). Sci China Earth Sci 51(4):528–539

    Article  Google Scholar 

  • Isozaki Y (1997) Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235–238

    Article  Google Scholar 

  • Jiang HS, Joachimski MM, Wignall PB, Zhang MH, Lai XT (2015) A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends in Bianyang (Guizhou Province, South China). Palaeogeogr Palaeoclimatol Palaeoecol 440:690–695

    Article  Google Scholar 

  • Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH (2000) Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289:432–436

    Article  Google Scholar 

  • Joachimski MM, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y (2012) Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology 40(3):195–198

    Article  Google Scholar 

  • Joachimski MM, Alekseev AS, Grigoryan A, Gatovsky YA (2019) Siberian Trap volcanism, global warming and the Permian-Triassic mass extinction: new insights from Armenian Permian-Triassic sections. Geol Soc Am Bull. https://doi.org/10.1130/B35108.1

    Article  Google Scholar 

  • Kala S, Turlapati V, Devaraju J, Rasheed MA, Sivaranjanee N, Ravi A (2021) Impact of sedimentary environment on pore parameters of thermally mature Permian shale: a study from Kommugudem Formation of Krishna Godavari Basin (India). Mar Pet Geol 132:1–15

    Article  Google Scholar 

  • Kametaka M, Takebe M, Nagai H, Zhu S, Takayanagi Y (2005) Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: a continental shelf radiolarian chert. Chem Geol 174:197–222

    Google Scholar 

  • Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofimov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91

    Article  Google Scholar 

  • Korte C, Kozur HW, Bruckschen P, Veize J (2003) Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta 67(1):47–62

    Article  Google Scholar 

  • Korte C, Pande P, Kalia P, Kozur HW, Joachimski MM, Oberhansli H (2010) Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci 37:293–311

    Article  Google Scholar 

  • Krull ES, Retallack GJ (2000) δ13C depth profiles from paleosols from the Permian-Triassic boundary: evidence for methane release. GSA Bull 112:1459–1472

    Article  Google Scholar 

  • Leif RN, Simoneit BRT (1995) Ketones in hydrothermal petroleums and sediment extracts from Guaymas Basin Gulf of California. Org Geochem 23:889–904

    Article  Google Scholar 

  • Li R, Jones B (2017) Diagenetic overprint on negative δ13C excursions across the Permian/Triassic boundary: a case study from Meishan section China. Palaeogeogr Palaeoclimatol Palaeoecol 468:18–33

    Article  Google Scholar 

  • Liang D, Tong JN, Zhao LS (2011) Lower Triassic Smithian-Spathian Boundary at West Pingdingshan Section in Chaohu Anhui Province. Sci China-Earth Sci 41(2):149–157

    Google Scholar 

  • Liu C, Xie Q, Wang G, Song Y, Qi K (2016) Dolomite origin and its implication for porosity development of the carbonate gas reservoirs in the Upper Permian Changxing Formation of the eastern Sichuan Basin (Southwest China). J Nat GAS Sci Eng 35:775–797

    Article  Google Scholar 

  • Liu C, Xie Q, Wang G, He W, Song Y, Tang Y, Wang Y (2017) Rare earth element characteristics of the Carboniferous Huanglong Formation dolomites in eastern Sichuan Basin (southwest China): implications for origins of dolomitizing and diagenetic fluids. Mar Pet Geol 81:33–49

    Article  Google Scholar 

  • Liu C, Ma J, Zhang L, Wang C, Liu J (2022) Protracted formation of nodular cherts in marine platform: new insights from the Middle Permian Chihsian carbonate successions South China. Carbonate Evaporite 37(1):1–19

    Article  Google Scholar 

  • Liu C, Jiang T, Yang Y, Ma J (2023) Temporal and spatial variations of high-resolution strontium, carbon, and oxygen isotopic chemostratigraphy at the end-Permian crisis boundary in South China. Gondwana Res 113:89–101

    Article  Google Scholar 

  • Luo Q, Zhang L, Zhong N, Wu J, Goodarzi F, Sanei H, Skovsted C, Suchý V, Li M, Ye X, Cao W, Liu A, Min X, Pan Y, Yao L, Wu J (2021) Thermal evolution behavior of the organic matter and a ray of light on the origin of vitrinite-like maceral in the Mesoproterozoic and Lower Cambrian black shales: insights from artificial maturation. Int J Coal Geol 244:103813

    Article  Google Scholar 

  • Meyer KM, Yu M, Jost AB, Kelley BM, Payne JL (2011) δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet Sci Lett 302:378–384

    Article  Google Scholar 

  • Nazemi M, Tavakoli V, Sharifi-Yazdi M, Rahimpour-Bonab H, Hosseini M (2019) The impact of micro-to macro-scale geological attributes on Archie’s exponents, an example from Permian-Triassic carbonate reservoirs of the central Persian Gulf. Mar Pet Geol 102:775–785

    Article  Google Scholar 

  • Payne JL, Lehrmann DJ, Wei JY, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509

    Article  Google Scholar 

  • Ramos FC, Wolff JA, Tollstrup DL (2003) Measuring 87Sr/86Sr variation in minerals and groundmass from basalts using LA-MC-ICP MS. Chem Geol 211:135–158

    Article  Google Scholar 

  • Renne PR, Zhang ZC, Richards MA, Black MT, Basu AR (1995) Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science 269:1413–1416

    Article  Google Scholar 

  • Ryskin G (2003) Methane-driven oceanic eruptions and mass extinction. Geology 31:741–744

    Article  Google Scholar 

  • Saltzman MR, Edwards CT, Leslie SA, Dwyer GS, Bauer JA (2014) Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. GSA Bull 126(11/12):1551–1568

    Article  Google Scholar 

  • Sano Y, Toyoshima K, Shirai A, Komiya T (2014) Ion microprobe U-Pb dating and Sr isotope measurement of a protoconodont. J Asian Earth Sci 92:10–17

    Article  Google Scholar 

  • Schobben M, Joachimski MM, Korn D, Leda L, Korte C (2014) Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res 26(2):675–683

    Article  Google Scholar 

  • Shen SZ, Mei SL (2010) Lopingian (Late Permian) high-resolution conodont biostratigraphy in Iran with comparison to South China zonation. Geol J 45:135–161

    Article  Google Scholar 

  • Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen YA, Wang XD, Wang W, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG (2011) Calibrating the End-Permian mass extinction. Science 334:1367–1372

    Article  Google Scholar 

  • Shen SZ, Cao CQ, Zhang H, Bowring SA, Henderson CM, Payne JL, Davydov VI, Chen B, Yuan DX, Zhang YC, Wang W, Zheng QF (2013) High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth Planet Sci Lett 375:156–165

    Article  Google Scholar 

  • Simoneit BRT, Brenner S, Peters KE (1987) Thermal alteration of cretaceous black shale by basaltic intrucsions in the eastern Atlantic. Nature 273(5663):501–504

    Article  Google Scholar 

  • Song HJ, Tong J, Xiong YL, Sun DY, Li T, Song HY (2012) The large increase of δ13Ccarb-depth gradient and the end-Permian mass extinction. Sci China Earth Sci 55(7):1101–1109

    Article  Google Scholar 

  • Song HJ, Wignall PB, Chu DL, Tong JN, Sun YD, Song HY, He WH, Tian L (2014) Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci Rep. https://doi.org/10.1038/srep04132

    Article  Google Scholar 

  • Sun YD, Joachimski MM, Wignall PB, Yan CB, Chen YL, Jiang HS, Wang LN, Lai XL (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370

    Article  Google Scholar 

  • Sun H, Xiao YL, Gao YJ, Zhang GJ, Casey JF, Shen YA (2018) Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proc Natl Acad Sci USA 115:3782–3787

    Article  Google Scholar 

  • Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500

    Article  Google Scholar 

  • Taylor SR, Mclennan SM, Armstrong RL, Tarney J (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks [and discussion]. Philos Trans R Soc B Biol Sci 301(4):398–399

    Google Scholar 

  • Tong JN, Hansen HJ, Zhao LS, Zuo JX (2005) A GSSP candidate of the Induan-Olenekian boundary-stratigraphic sequence of the west Pingdingshan section in Chaohu Anhui Province. J Stratigr 29(2):205–214

    Google Scholar 

  • Trotter JA, Eggins SM (2006) Chemical systematics of conodont apatite determined by laser ablation ICPMS. Chem Geol 233:196–216

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Waight T, Baker J, Peate D (2002) Sr isotope ratio measurements by double-focusing MC-ICP-MS: techniques observations and pitfalls. Int J Mass Spectrom 221:229–244

    Article  Google Scholar 

  • Wang Y, Cheng H, Hu Q (2023) Adsorption of methane onto mudstones under supercritical conditions: mechanisms, physical properties and thermodynamic parameters. Pet Sci. https://doi.org/10.1016/j.petsci.2022.08.017

    Article  Google Scholar 

  • Woodard SC, Thomas DJ, Grossman EL, Olszewski TD, Yancey TE, Miller BV, Raymond A (2013) Radiogenic isotope composition of Carboniferous seawater from North American epicontinental seas. Palaeogeogr Palaeoclimatol Palaeoecol 370:51–63

    Article  Google Scholar 

  • Xie S, Pancost RD, Huang J, Wignall PB, Lai X (2007) Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology 35(12):1083–1086

    Article  Google Scholar 

  • Xu Z, Wang Y, Jiang S (2022) Impact of input preservation and dilution on organic matter enrichment in lacustrine rift basin: a case study of lacustrine shale in Dehui Depression of Songliao Basin (NE China). Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2021.105386

    Article  Google Scholar 

  • Yan J (2004) Origin of Permian Chihsian carbonates from south China and its geological implications. Acta Sedimentol Sin 22(4):579–587

    Google Scholar 

  • Yang SR, Wang XP, Hao WC (1999) Triassic conodont sequences from different facies in China. In: Yao A, Ezaki Y, Hao WC (eds) Biotic and geological development of the paleo-Tethys in China. Beijing University Press, Beijing, pp 97–112 (in Chinese)

    Google Scholar 

  • Yang YH, Zhang HF, Wu FY, Xie LW, Zhang YB (2005) Accurate measurement of strontium isotopic composition by Neptune multiple-collector inductively coupled plasma mass spectrometry. J Chin Mass Spectr Soc 26(4):215–221

    Google Scholar 

  • Yin H, Xie S, Luo G, Algeo TJ, Zhang K (2012) Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth Sci Rev 115:163–172

    Article  Google Scholar 

  • Yuan DX, Shen SZ, Henderson CM, Chen J, Zhang H, Feng HZ (2014) Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections (South China). Lithos 204:220–245

    Article  Google Scholar 

  • Zhao LS, Tong JN, Orchard MJ, Zuo JX (2005) Lower triassic conodont zonations of Chaohu area (Anhui Province) and their global correlation. J China Univ Geosci 30(5):623–634

    Google Scholar 

  • Zhao LS, Tong JN, Sun ZM, Chang DF, Zhang KX, Zhang SX, Orchard MJ (2007) High-resolution conodont biostratigraphy in the Induan-Olenekian boundary strata at west Pingdingshan section, Chaohu, Anhui Province. J China Univ Geosci 32(3):291–302

    Google Scholar 

  • Zhao LS, Tong JN, Zhang SX, Sun ZM (2008) An update of conodonts in the Induan-Olenekian boundary strata at West Pingdingshan Section (Chaohu, Anhui Province). J China Univ Geosci 19:207–216

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Kangjun Wu from Chongqing University of Science and Technology is thanked for assistance in field sampling guidance.

Funding

The current study is jointly funded by the National Natural Science Foundation of China (No. 42002159) and the Foundation of National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing (No. PRE/open-2301).

Author information

Authors and Affiliations

Authors

Contributions

CL: conceptualization, methodology, formal analysis, writing—original draft. JD: formal analysis, investigation, data curation, methodology. WS: formal analysis, investigation, data curation, methodology. XL: formal analysis, investigation, data curation, methodology. SS: conceptualization, coordination, project administration. YY: methodology, formal analysis. MF: methodology, investigation, formal analysis. TJ: resources, investigation, data curation. JL: resources, investigation, data curation.

Corresponding author

Correspondence to Shasha Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 KB)

Supplementary file2 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ding, J., Sun, W. et al. Episodic magmatism at the Permian/Triassic crisis boundary and its linkage to underlying source rocks: constraints from conodont-based high-resolution geochemical proxies in marine carbonate successions, South China. Int J Earth Sci (Geol Rundsch) 113, 93–105 (2024). https://doi.org/10.1007/s00531-023-02357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-023-02357-8

Keywords

Navigation