Skip to main content
Log in

Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The carbonatites of Brava Island, Cape Verde hot spot, allow to investigate whether they represent small mantle melt fractions or form through extreme fractionation and/or liquid immiscibility from CO2-bearing silicate magmas. The intrusive carbonatites on Brava Island are part of a strongly silica-undersaturated pyroxenite, ijolite, nephelinite, nepheline syenite, combeite–foiditite, carbonatite series. The major and trace element composition of this suite is reproduced by a model fractionating olivine, clinopyroxene, perovskite, biotite, apatite, titanite, sodalite and FeTi oxides, all present as phenocrysts in the rocks corresponding to their fractionation interval. Fractionation of ~90 wt% crystals reproduces the observed geochemical trend from the least evolved ultramafic dikes (bulk X Mg = 0.64) to syenitic compositions. The modelled fractional crystallization leads to alkali enrichment, driving the melt into the carbonatite–silicate miscibility gap. An initial CO2 content of 4000 ppm is sufficient to saturate in CO2 at the point where the rock record suggests continuing unmixing carbonatites from nephelinites to nepheline syenites after 61 wt% fractionation. Such immiscibility is also manifested in carbonatite and silicate domains on a hand-specimen scale. Furthermore, almost identical primary clinopyroxene, biotite and carbonate compositions from carbonatites and nephelinites to nepheline syenites substantiate their conjugate character and our unmixing model. The modelled carbonatite compositions correspond to the natural ones except for their much higher alkali contents. The alkali-poor character of the carbonatites on Brava and elsewhere is likely a consequence of the release of alkali-rich CO2 + H2O fluids during final crystallization, which cause fenitization in adjacent rocks. We propose a general model for carbonatite generation during alkaline magmatism, where the fractionation of heavily Si-undersaturated, alkaline parent melts results in alkali and CO2 enrichment in the evolving melt, ultimately leading to immiscibility between carbonatites and evolved Si-undersaturated alkaline melts. Early saturation in feldspathoids or feldspars would limit alkali enrichment preventing the formation of carbonatites. The complete and continuous fractionation line from almost primitive melts to syenitic compositions on Brava underlines the possibly important role of intrusives for hot spot volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Note that XMg in the rocks of the Brava Middle Unit is often a poor differentiation indicator due to secondary high-Mg calcite and dolomite.

References

  • Ablay GJ, Carroll MR, Palmer MR, Marti J, Sparks RSJ (1998) Basanite-phonolite lineages of the Teide-Pico Viejo Volcanic Complex Tenerife, Canary Islands. J Petrol 39:905–936

    Article  Google Scholar 

  • Assunção CFT, Machado F, Gomes RAD (1965) On the occurrence of carbonatites in the Cape Verde Islands. Boletim da Sociedade Geológica de Portugal 16:179–188

    Google Scholar 

  • Bailey BK (1987) Mantle metasomatism—perspective and prospect. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geological Society Special Publications, vol 30, pp 1–14

  • Baker I (1968) Intermediate oceanic volcanic rocks and the “Daly gap”. Earth Planet Sci Lett 4:103–106

    Article  Google Scholar 

  • Balogh K, Ahijado A, Casillas R, Fernàndez C (1999) Contributions to the chronology of the Basal Complex of Fuerteventura, Canary Islands. J Volcanol Geoth Res 90:81–101

    Article  Google Scholar 

  • Bell K, Kjarsgaard BA, Simonetti A (1998) Carbonatites—into the twenty-first century. J Petrol 39:1839–1845

    Article  Google Scholar 

  • Berger J, Ennih N, Mercier J-CC, Liégeois J-P, Demaiffe D (2009) The role of fractional crystallization and late-stage peralkaline melt segregation in the mineralogical evolution of Cenozoic nephelinites/phonolites from Saghro (SE Morocco). Mineral Mag 73:59–82

    Article  Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  Google Scholar 

  • Brooker RA (1998) The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: an experimental study. J Petrol 39:1905–1915

    Google Scholar 

  • Brooker RA, Kjarsgaard BA (2011) Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. J Petrol 52:1281–1305

    Article  Google Scholar 

  • Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts: part I: bulk solubility data. Chem Geol 174:225–239

    Article  Google Scholar 

  • Chayes F (1963) Relative abundance of intermediate members of the oceanic basalt-trachyte association. J Geophys Res 68:1519–1534

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  • Courtney RC, White RS (1986) Anomalous heat flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle. Geophys J Roy Astron Soc 87:815–867

    Article  Google Scholar 

  • Daly RA (1925) The geology of ascension island. In: Proceedings of the American Academy of Arts and Sciences. American Academy of Arts and Sciences, pp 3–80

  • Dawson JB (1993) A supposed sovite from Oldoinyo Lengai, Tanzania: result of extreme alteration of alkali carbonatite lava. Mineral Mag 57:93–101

    Article  Google Scholar 

  • Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Article  Google Scholar 

  • Doucelance R, Hammouda T, Moreira M, Martins JC (2010) Geochemical constraints on depth of origin of oceanic carbonatites: the Cape Verde case. Geochim Cosmochim Acta 74:7261–7282

    Article  Google Scholar 

  • Drüppel K (2003) Petrogenesis of the Mesoproterozoic anorthosite, syenite and carbonatite suites of NW Namibia and their contribution to the metasomatic formation of the Swartbooisdrif sodalite deposits. Dissertation, Universität Würzburg

  • Eitel W (1922) Über das System CaCO3-NaAlSiO4 (Calcit-Nephelin) und den Cancrinit. Neues Jahrbuch für Mineralogie 2:45–61

    Google Scholar 

  • Falloon TJ, Green DH (1989) The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett 94:364–370

    Article  Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites: an experimental study. Contrib Mineral Petr 73:105–117

    Article  Google Scholar 

  • Garcia MO, Frey F, Grooms DG (1986) Petrology of volcanic rocks from Kaula Island, Hawaii: implications for the origin of Hawaiian phonolites. Contrib Mineral Petr 94:461–471

    Article  Google Scholar 

  • Grassi D, Schmidt MW (2011) The melting of carbonated pelites from 70 to 700 km depth. J Petrol 52:765–789

    Article  Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) A matlab-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40, Vancouver, BC, pp 328–333

  • Hauri EH, Shimizu N, Dieu JJ, Hart ST (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227

    Article  Google Scholar 

  • Hay DE, Wendlandt RF, Wendlandt ED (1995) The origin of Kenya rift plateau-type flood phonolites: evidence from geochemical studies for fusion of lower crust modified by alkali basaltic magmatism. J Geophys Res 100:411–422

    Article  Google Scholar 

  • Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petr 142:520–542

    Article  Google Scholar 

  • Holm PM, Wilson JR, Christensen BP, Hansen L, Hansen SL, Hein KM, Mortensesn AK, Pedersen R, Plesner S, Runge MK (2006) Sampling the Cape Verde Mantle Plume: evolution of melt compositions on santo Antão, Cape Verde Islands. J Petrol 47:145–189

    Article  Google Scholar 

  • Humphreys ER, Niu Y (2009) On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112:118–136

    Article  Google Scholar 

  • Hunter RH, McKenzie D (1989) The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet Sci Lett 92:347–356

    Article  Google Scholar 

  • Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A, Kamenetsky VS (2012) An experimental study of carbonated eclogite at 3· 5–5· 5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol 0:1–33

  • Kjarsgaard BA, Peterson TD (1991) Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence. Miner Petrol 43:293–314

    Article  Google Scholar 

  • Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C, Shen G, Manning CE (2014) Ultralow viscosity of carbonate melts at high pressures. Nat Commun 5:5091

    Article  Google Scholar 

  • Korobeinikov AN, Laajoki K (1994) Petrological aspects of the evolution of clinopyroxene composition in the intrusive rocks of the Lovozero alkaline massif. Geochem Int +31: 69–76

  • Koster van Groos AF (1975) The effect of high CO2 pressures on alkalic rocks and its bearing on the formation of alkalic ultrabasic rocks and the associated carbonatites. Am J Sci 275:163–185

    Article  Google Scholar 

  • Kresten P, Morogan V (1986) Fenitization at the Fen complex, southern Norway. Lithos 19:27–42

    Article  Google Scholar 

  • Kyle PR, Moore JA, Thirlwall MF (1992) Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. J Petrol 33:849–875

    Article  Google Scholar 

  • Larsen LM (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland. J Petrol 17:258–290

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific Oxford Bibliografía, pp 130–171

  • Le Roex AP, Cliff RA, Adair BJI (1990) Tristan da Cunha, South Atlantic: geochemistry and petrogenesis of a basanite-phonolite lava series. J Petrol 31:779–812

    Article  Google Scholar 

  • Lee W-J, Wyllie PJ (1997) Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions. Contrib Mineral Petr 127:1–16

    Article  Google Scholar 

  • Lee W-J, Wyllie PJ (1998) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. J Petrol 39:2005–2013

    Article  Google Scholar 

  • Lodge A, Helffrich G (2006) Depleted swell root beneath the Cape Verde Islands. Geology 34:449–452

    Article  Google Scholar 

  • Machado F, Azeredo Leme J, Monjardino J, Seita MF (1968) Carta geológica de Cabo Verde, notícia explicativa da Ilha Brava e dos Ilhéus Secos. Garcia de Orta 16:123–130

    Google Scholar 

  • Madeira J, Brum da Silveira A, Mata J, Mourão C, Martins S (2008) The role of mass movements on the geomorphologic evolution of ocean islands: examples from Fogo and Brava in the Cape Verde archipelago. Comun Geol 95:99–112

    Google Scholar 

  • Madeira J, Mata J, Mourão C, Da Silva AB, Martins S, Ramalho R, Hoffmann DL (2010) Volcano stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U-Th and field constraints. J Volcanol Geoth Res 196:219–235

    Article  Google Scholar 

  • Mann U, Marks M, Markl G (2006) Influence of oxygen fugacity on mineral compositions in peralkaline melts: the Katzenbuckel volcano, Southwest Germany. Lithos 91:262–285

    Article  Google Scholar 

  • Marks M, Halama R, Wenzel T, Markl G (2004) Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt trace-element partitioning. Chem Geol 211:185–215

    Article  Google Scholar 

  • Marks MAW, Schilling J, Coulson IM, Wenzel T, Markl G (2008) The alkaline-peralkaline Tamazeght Complex, High Atlas Mountains, Morocco: mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. J Petrol 49:1097–1131

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petr 78:85–98

    Article  Google Scholar 

  • Martin LHJ, Schmidt MW, Mattsson HB, Guenther D (2013) Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. J Petrol 54:2301–2338

    Article  Google Scholar 

  • Minarik WG, Watson EB (1995) Interconnectivity of carbonate melt at low melt fraction. Earth Planet Sci Lett 133:423–437

    Article  Google Scholar 

  • Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068

    Article  Google Scholar 

  • Mitchell RH, Vladykin NV (1996) Compositional variation of pyroxene and mica from the little Murun ultrapotassic complex, Aldan Shield, Russia. Mineral Mag 60:907–925

    Article  Google Scholar 

  • Morizet Y, Brooker RA, Kohn SC (2002) CO2 in haplo-phonolite melt: solubility, speciation and carbonate complexation. Geochim Cosmochim Acta 66:1809–1820

    Article  Google Scholar 

  • Mourão C (2012) Geoquímica das rochas magmáticas da ilha Brava: implicações para a origem e variabilidade espaço-temporal do ponto quente de Cabo Verde. Dissertation, Universidade de Lisboa

  • Mourão C, Mata J, Doucelance R, Madeira J, da Silva AB, Silva LC, Moreira M (2010) Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): a nephelinite-carbonatite immiscibility product. J Afr Earth Sci 56:59–74

    Article  Google Scholar 

  • Müller-Lorch D, Marks MAW, Markl G (2007) Na and K distribution in agpaitic pegmatites. Lithos 95:315–330

    Article  Google Scholar 

  • O’Neill HSC, Palme H (1998) Composition of the silicate Earth: implications for accretion and core formation. In: Jackson I (ed) The Earth’s Mantle composition, structure, and evolution. Cambridge University Press, Cambridge, pp 3–126

  • Phoenix R, Nuffield EW (1949) Cancrinite from Blue Mountain, Ontario. Am Mineral 34:452–455

    Google Scholar 

  • Pim J, Peirce C, Watts AB, Grevemeyer I, Krabbenhoeft A (2008) Crustal structure and origin of the CapeVerde Rise. Earth Planet Sci Lett 272:422–428

    Article  Google Scholar 

  • Ramalho R, Helffrich G, Cosca M, Vance D, Hoffmann D, Schmidt DN (2010) Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands. Nat Geosci 3:774–777

    Article  Google Scholar 

  • Rosatelli G, Wall F, Stoppa F, Brilli M (2010) Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses. Contrib Mineral Petr 160:645–661

    Article  Google Scholar 

  • Rubie DC, Gunter WD (1983) The role of speciation in alkaline igneous fluids during fenite metasomatism. Contrib Mineral Petr 82:165–175

    Article  Google Scholar 

  • Shearer CK, Larsen LM (1994) Sector-zoned aegirine from the Ilimaussaq alkaline intrusion, South Greenland: implications for trace element behavior in pyroxene. Am Mineral 79:340–352

    Google Scholar 

  • Stephenson D (1972) Alkali clinopyroxenes from nepheline syenites of the South Qoroq Centre, south Greenland. Lithos 5:187–201

    Article  Google Scholar 

  • Taylor RC, King BC (1967) The pyroxenes of the alkaline igneous complexes of Eastern Uganda. Mineral Mag 280:5–22

    Article  Google Scholar 

  • Thompson GM, Smith IEM, Malpas JG (2001) Origin of oceanic phonolites by crustal fractionation and the problem of the Daly gap: an example from Rarotonga. Contrib Mineral Petr 142:336–346

    Article  Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  • Verhulst A, Balaganskaya E, Kirnarsky Y, Demaiffe D (2000) Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos 51:1–25

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346

    Article  Google Scholar 

  • Watkinson DH, Wyllie PJ (1971) Experimental study of the composition join NaAlSiO4-CaCO3-H2O and the genesis of Alkalic Rock—Carbonatite Complexes. J Petrol 12:357–378

    Article  Google Scholar 

  • Willbold M, Stracke A (2010) Formation of enriched mantle components by recycling of upper and lower continental crust. Chem Geol 276:188–197

    Article  Google Scholar 

  • Williams CA, Hill IA, Young R, White RS (1990) Fracture zones across the Cape Verde Rise, NE Atlantic. J Geol Soc Lond 147:851–857

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petr 129:166–181

    Article  Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. Carbonatites: genesis and evolution. Unwin Hyman, London, p 619

  • Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Paul Holm and Bruce Kjarsgaard for thoughtful comments of an earlier version of the manuscript and two anonymous reviewers for helpful criticism. This study was financed by ETH Grant 34-11-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Weidendorfer.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidendorfer, D., Schmidt, M.W. & Mattsson, H.B. Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites. Contrib Mineral Petrol 171, 43 (2016). https://doi.org/10.1007/s00410-016-1249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1249-5

Keywords

Navigation