Skip to main content
Log in

The role of speciation in alkaline igneous fluids during fenite metasomatism

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Fenites associated with alkaline igneous rocks show a progression from a high temperature assemblage consisting of sodium-rich alkali feldspar + a sodium-ironrich mafic mineral, to an extreme end member assemblage consisting of pure potassium feldspar + iron oxide. The latter assemblage is only found in association with low temperature carbonatites. Segments of this distribution trend can be found in the contact aureole of single intrusive centers.

In the east African Kisingiri nephelinite volcano, ijolite intruded a granodioritic basement, producing a fenitized contact aureole. During metasomatism of granodiorite, according to the mass balance model of Rubie (1982), feldspar only participated in an alkali exchange reaction, while quartz was replaced by sodic pyroxene. Outward from the intrusive contact, with decreasing temperature, feldspar became progressively K-enriched, while pyroxene was enriched in the acmite component. It is predicted that alkaliexchange reactions were controlled by NaCl0-KCl0 aqueous complexes close to the intrusive contact, while further out in the aureole Na+-K+ ions dominated at the lower temperatures and enhanced the level of potassium metasomatism of feldspar. With decreasing temperature in the aureole, the K/Na ratio of the fluid decreased and consequently the activity of acmite increased.

Around carbonatites, where the level of CO2 in the escaping fluid can be expected to be high, Na2CO 03 -K2CO 03 complexes may dominate. Alkali exchange between feldspar and these aqueous species enhances, even further, the stabilization of pure potassium feldspar. Boiling may also play an important role in potassium metasomatism as carbonatites are frequently associated with pyroclastic rocks. Formation of hematite instead of sodic pyroxene may be attributed to low\(a_{SiO_2 } \), high\(a_{Fe^{3 + } } \) and a CO2-rich fluid.

Important variables which determine the products of alkali metasomatism are shown to be temperature, pressure and CO2 content of the fluid, as well as the K/Na ratio of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleyard EC, Woolley AR (1979) Fenitization: An example of the problems of characterizing mass transfer and volume changes. Chem Geol 26:1–15

    Google Scholar 

  • Chou I-Ming, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 227:1296–1314

    Google Scholar 

  • Dawson JB (1962) Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature 195:1075–1076

    Google Scholar 

  • Deans T, Sukheswala RN, Sethna SF, Viladkar SG (1972) Metasomatic feldspar rocks (potash fenites) associated with the fluorite deposits and carbonatites of Amba Dongar, Gujarat, India. Inst Mining and Metallurgical Trans (sect B: Appl Earth Sci) 81:B1-B9

    Google Scholar 

  • Denaeyer ME (1966) Sur la présence d'une carbonatite ankéritique (raughaugite) en boudure du complexe alcalin de Kirumba (Kivu). C.R. Acad Sci Paris 263(D):9–12

    Google Scholar 

  • Du Bois CGB, Furst J, Guest NJ, Jennings DJ (1963) Fresh natrocarbonatite lava from Oldoinyo L'Engai. Nature 197:445–446

    Google Scholar 

  • Eugster HP, Gunter WD (1981) The compositions of supercritical metamorphic solutions. Bull Mineral 104:817–826

    Google Scholar 

  • Fournier RO (1976) Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure. Geochim Cosmochim Acta 40:1553–1561

    Google Scholar 

  • Franck EU (1956) Hochverdichteter Wasserdampf III. Ionendissoziation von KCI, KOH und H2O in überkritischem Wasser. Z Phys Chem 8:192–206

    Google Scholar 

  • Franck EU (1961) Überkritisches Wasser als elektrolytisches Lösungsmittel. Angew Chem 73:309–322

    Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites — An experimental study. Contrib Mineral Petrol 73:105–117

    Google Scholar 

  • Gresens RL (1967) Composition-volume relations of metasomatism. Chem Geol 2:47–65

    Google Scholar 

  • Gunter WD, Eugster HP (1980) Mica-feldspar equilibria in supercritical alkali chloride solutions. Contrib Mineral Petrol 75:235–250

    Google Scholar 

  • Heinrich EW (1966) The Geology of Carbonatites. Rand McNally, Chicago

    Google Scholar 

  • Heinrich EW, Moore DG (1969) Metasomatic potash feldspar rocks associated with alkalic igneous complexes. Can Mineral 10:136

    Google Scholar 

  • Helgeson HC, Delaney JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of the rock forming minerals. Am J Sci 278 A:1–229

    Google Scholar 

  • Iiyama JT (1965) Influence des anions sur les équilibres d'échange d'ions Na-K dans les feldspaths alcalines à 600° C sous une pression de 1000 bars. Bull Soc Franc Mineral Crist LXXXVIII:618–622

    Google Scholar 

  • Jaeger JC (1957) The temperature in the neighbourhood of a cooling intrusive sheet. Am J Sci 255:306–318

    Google Scholar 

  • Lagache M, Weisbrod A (1977) The system: Two alkali feldspars KCl-NaCl-H2O at moderate to high temperatures and pressures. Contrib Mineral Petrol 62:77–101

    Google Scholar 

  • Le Bas MJ (1977) Carbonatite-Nephelinite Volcanism. J. Wiley & Sons, New York

    Google Scholar 

  • Le Bas MJ (1981) Carbonatite magmas. Mineral Mag 44:133–140

    Google Scholar 

  • McCall GJH (1958) Geology of the Gwasi area. Geol Surv Kenya, Rept 45

  • Milton C, Eugster HP (1959) Mineral assemblages of the Green River Formation. In: Abelson PH (ed) Researches in geochemistry, John Wiley & Sons, New York, pp 118–150

    Google Scholar 

  • Orville PM (1962) Alkali metasomatism and feldspars. Norsk Geol Tidsskr 42:283–316

    Google Scholar 

  • Orville PM (1963) Alkali ion exchange between vapor and feldspar phases. Am J Sci 261:201–237

    Google Scholar 

  • Parsons I (1978) Alkali-feldspars: which solvus? Phys Chem Minerals 2:199–213

    Google Scholar 

  • Poty PB, Stalder HA, Weisbrod AM (1974) Fluid inclusion studies in quartz from fissures of Western and Central Alps. Schweiz Mineral Petrogr Mitt 54:717–752

    Google Scholar 

  • Quist AS, Marshall WL (1968) Electrical conductances of aqueous sodium chloride solutions from 0°–800° C and at all pressures to 4,000 bars. J Phys Chem 72:684–703

    Google Scholar 

  • Rankin AH (1975) Fluid inclusion studies in apatite from carbonatites of the Wasaki area of western Kenya. Lithos 8:123–136

    Google Scholar 

  • Rankin AH, Le Bas MJ (1973) A study of fluid inclusions in alkaline rocks with special reference to critical phenomena. J Geol Soc Lond 129:319

    Google Scholar 

  • Rankin AH, Le Bas MJ (1974) Nahcolite (NaHCO3) in inclusions in apatites from some east African ijolites and carbonatites. Mineral Mag 39:564–570

    Google Scholar 

  • Ritzert G, Franck EU (1968) Elektrische Leitfähigkeit wässeriger Lösungen bei hohen Temperaturen und Drucken. I. KCl, BaCl2, Ba(OH)2, und MgSO4 bis 750° C and 6 kbar. Ber Bunsenges Phys Chem 72:798–808

    Google Scholar 

  • Rubie DC (1971) The structure and petrology of the Kisingiri nephelinitic volcano, western Kenya. Unpublished Ph.D. thesis, University of Leicester

  • Rubie DC (1982) Mass transfer and volume change during alkali metasomatism at Kisingiri, western Kenya. Lithos 15:99–109

    Google Scholar 

  • Rubie DC, Le Bas MJ (1977a) Kisingiri: The sub-volcanic alkali silicate rocks. In: Le Bas MJ, Carbonatite-nephelinite volcanism, John Wiley & Sons, New York, pp 47–79

    Google Scholar 

  • Rubie DC, Le Bas MJ (1977b) Kisingiri: The early carbonatitic activity. In: Le Bas MJ, Carbonatite-nephelinite volcanism, John Wiley & Sons, New York, pp 80–86

    Google Scholar 

  • Siemiatkowska KM, Martin RF (1975) Fenitization of Mississagi quartzite, Sudbury area. Geol Soc Amer Bull 86:1109–1122

    Google Scholar 

  • Sobolev VS, Bazarov TYu, Kostyuk VP (1974) Inclusions in the minerals of some types of alkaline rocks. In: Sorensen H (ed) The alkaline rocks, John Wiley & Sons, New York, pp 389–401

    Google Scholar 

  • Sutherland DS (1965) Potash-trachytes and ultrapotassic rocks associated with the carbonatite complex of the Toror Hills, Uganda. Mineral Mag 35:363–378

    Google Scholar 

  • Sutherland DS (1969) Sodic amphiboles and pyroxenes from fenites in east Africa. Contrib Mineral Petrol 24:114–135

    Google Scholar 

  • Thompson JB, Waldbaum DR (1968) Mixing properties of sanidine crystalline solutions. I: Calculations based on ion-exchange data. Am Mineral 53:1965–1999

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8SiO2-H2O. Geol Soc Am Mem 74

  • Tuttle OF, Gittins J (1966) Carbonatites. John Wiley & Sons, New York

    Google Scholar 

  • Tyler RC, King BC (1967) The pyroxenes of the alkaline igenous complexes of eastern Uganda. Mineral Mag 36:5–21

    Google Scholar 

  • Vartiainen H, Woolley AR (1976) The petrography, mineralogy and chemistry of the fenites of the Sokli carbonatite intrusion, Finland. Geol Surv Finl Bull 280

  • White DE (1955) Thermal springs and epithermal ore deposits. Econ Geol, 50th Anniversary Vol:99–154

  • Winkler HGF (1979) Petrogenesis of metamorphic rocks, 5th ed. Springer, New York

    Google Scholar 

  • Woolley AR (1969) Some aspects of fenitization with particular reference to Chilwa Island and Kangankunde, Malawi. Bull British Museum (Nat Hist) Mineral 2:189–219

    Google Scholar 

  • Woolley AR (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Mineral Mag 46:13–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubie, D.C., Gunter, W.D. The role of speciation in alkaline igneous fluids during fenite metasomatism. Contr. Mineral. and Petrol. 82, 165–175 (1983). https://doi.org/10.1007/BF01166611

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166611

Keywords

Navigation