Skip to main content
Log in

Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Freezing tolerance is the result of a wide range of physical and biochemical processes, such as the induction of antifreeze proteins, changes in membrane composition, the accumulation of osmoprotectants, and changes in the redox status, which allow plants to function at low temperatures. Even in frost-tolerant species, a certain period of growth at low but nonfreezing temperatures, known as frost or cold hardening, is required for the development of a high level of frost hardiness. It has long been known that frost hardening at low temperature under low light intensity is much less effective than under normal light conditions; it has also been shown that elevated light intensity at normal temperatures may partly replace the cold-hardening period. Earlier results indicated that cold acclimation reflects a response to a chloroplastic redox signal while the effects of excitation pressure extend beyond photosynthetic acclimation, influencing plant morphology and the expression of certain nuclear genes involved in cold acclimation. Recent results have shown that not only are parameters closely linked to the photosynthetic electron transport processes affected by light during hardening at low temperature, but light may also have an influence on the expression level of several other cold-related genes; several cold-acclimation processes can function efficiently only in the presence of light. The present review provides an overview of mechanisms that may explain how light improves the freezing tolerance of plants during the cold-hardening period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  PubMed  Google Scholar 

  • Apostol S, Szalai G, Sujbert L, Popova LP, Janda T (2006) Non-invasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves. Z Naturforsch C 61:734–740

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Boneh U, Biton I, Schwartz A, Ben-Ari G (2012) Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 187:89–96

    Article  CAS  PubMed  Google Scholar 

  • Boonman A, Prinsen E, Gilmer F, Schurr U, Peeters AJM, Voesenek LACJ, Pons TL (2007) Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol 143:1841–1852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cansev A, Gulen H, Eris A (2009) Cold-hardiness of olive (Olea europaea L.) cultivars in cold-acclimated and non-acclimated stages: seasonal alteration of antioxidative enzymes and dehydrin-like proteins. J Agric Sci 147:51–61

    Article  CAS  Google Scholar 

  • Chandler JW (2009) Auxin as compère in plant hormone crosstalk. Planta 231:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chen WQ, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou GZ, Whitham SA, Budworth PR, Tao Y, Xie ZY, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dang JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295

    Article  CAS  PubMed  Google Scholar 

  • Crosatti C, Rizza F, Badeck FW, Mazzucotelli E, Cattivelli L (2013) Harden the chloroplast to protect the plant. Physiol Plant 147(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signalling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Dirk K, Willmitzer L (2012) Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982

    CAS  PubMed  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    Article  CAS  PubMed  Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signalling in seeds and seedlings. Plant Cell 14:515–545

    Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413

    Article  CAS  PubMed  Google Scholar 

  • Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6(11):1746–1751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gray GR, Chauvin LP, Sarhan F, Huner N (1997) Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol 114:467–474

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    Article  CAS  PubMed  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters, and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185

    Article  PubMed  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007a) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat (Triticum aestivum L.) plants. Biol Plant 51:480–487

    Article  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007b) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Article  Google Scholar 

  • Howarth CJ, Ougham HJ (1993) Gene expression under temperature stress. New Phytol 125:1–26

    Article  CAS  Google Scholar 

  • Huner NPA, Williams JP, Maissan EE, Myscich EG, Krol M, Laroche A, Singh J (1989) Low temperature-induced decrease in trans-Δ3-hexadecenoic acid content is correlated with freezing tolerance in cereals. Plant Physiol 89:144–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3(6):224–230

    Article  Google Scholar 

  • Hurry VM, Huner NP (1992) Effect of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis. Plant Physiol 100(3):1283–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurry VM, Strand A, Tobiaeson M, Gardeström P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Janda T, Kissimon J, Szigeti Z, Veisz O, Páldi E (1994) Characterization of cold hardening in wheat using fluorescence induction parameters. J Plant Physiol 143:385–388

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci 164:301–306

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68:1674–1682

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Kim J (2013) Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23369–23384

    Google Scholar 

  • Kang HG, Singh KB (2000) Characterization of salicylic acid-responsive, Arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. Plant J 21:329–339

    Article  CAS  PubMed  Google Scholar 

  • Keren N, Krieger-Liszkay A (2011) Photoinhibition: molecular mechanisms and physiological significance. Physiol Plant 142:1–5

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim YK, Park JY, Kim J (2002) Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J 29:693–704

    Article  CAS  PubMed  Google Scholar 

  • Klíma M, Vítámvás P, Zelenková S, Vyvadilová M, Prášil IT (2012) Dehydrin and proline content in Brassica napus and B. carinata under cold stress at two irradiances. Biol Plant 56:157–161

    Article  Google Scholar 

  • Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, Pál M, Soltész A, Szalai G, Boldizsár Á, Kovács V, Janda T (2011) Low temperature and oxidative stress in cereals. Acta Agron Hung 59:169–189

    Article  Google Scholar 

  • Kosová K, Holková L, Prášil IT, Prášilová P, Bradáčová M, Vítámvás P, Čapková V (2008) The expression of dehydrin5 during the development of frost tolerance in barley (Hordeum vulgare). J Plant Physiol 165:1142–1151

    Article  PubMed  Google Scholar 

  • Kosová K, Prášil IT, Prášilová P, Vítámvás P, Chrpová J (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas68 × Igri cross during cold acclimation. J Plant Physiol 167:343–350

    Article  PubMed  Google Scholar 

  • Kosová K, Prasil IT, Vitamvas P, Dobrev P, Motyka V, Flokova K, Novak O, Turecková V, Rolcik J, Pesek B, Travnickova A, Gaudinova A, Galiba G, Janda T, Vlasakova E, Prasilova P, Vankova R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  PubMed  Google Scholar 

  • Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J (2000) Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275:6509–6514

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:15054–15059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levitt J (1972) Freezing resistance: types, measurements, and changes. In: Kozlowski TT (ed) Responses of plants to environmental stresses. Academic Press, New York, pp 75–109

    Google Scholar 

  • Maibam P, Nawkar GM, Park JH, Sahi VP, Lee SY, Kang CH (2013) The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. Int J Mol Sci 14:11527–11543

    Article  PubMed Central  PubMed  Google Scholar 

  • Majláth I, Szalai G, Soós V, Sebestyén E, Balázs E, Vanková R, Dobrev PI, Tandori J, Janda T (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314

    Article  PubMed  Google Scholar 

  • McKown R, Kuroki G, Warren G (1996) Cold responses of Arabidopsis mutants impaired in freezing tolerance. J Exp Bot 47:1919–1925

    Article  CAS  Google Scholar 

  • Mira-Rodado V, Sweere U, Grefen C, Kunkel T, Fejes E, Nagy F, Schafer E, Harter K (2007) Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. J Exp Bot 58:2595–2607

    Article  CAS  PubMed  Google Scholar 

  • Muday GK, Rahman A, Binder B (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    Article  CAS  PubMed  Google Scholar 

  • Ndong C, Danyluk J, Huner NPA, Sarhan F (2001) Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Mol Biol 45:691–703

    Article  CAS  PubMed  Google Scholar 

  • Ndong C, Danyluk J, Kenneth E, Wilson KE, Tessa Pocock T, Huner NPA, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central role of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Ntatsi G, Savvas D, Druege U, Schwarz D (2013) Contribution of phytohormones in alleviating the impact of sub-optimal temperature stress on grafted tomato. Sci Hortic 149:28–38

    Article  CAS  Google Scholar 

  • Pagter M, Lefevre I, Arora R, Hausman JF (2011) Quantitative and qualitative changes in carbohydrates associated with spring deacclimation in contrasting Hydrangea species. Environ Exp Bot 72:358–367

    Article  CAS  Google Scholar 

  • Pál M, Leskó K, Janda T, Páldi E, Szalai G (2007) Cadmium-induced changes in the membrane lipid composition of maize plants. Cereal Res Commun 35:1631–1642

    Article  Google Scholar 

  • Patel D, Franklin KA (2009) Temperature-regulation of plant architecture. Plant Signal Behav 4:577–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147:28–35

    Article  CAS  PubMed  Google Scholar 

  • Sasheva P, Szalai G, Janda T, Popova L (2010) Study of the behaviour of antioxidant enzymes in the response to hardening and freezing stress in two wheat (Triticum aestivum L.) varieties. C R Acad Bulg Sci 63:1733–1740

    CAS  Google Scholar 

  • Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki KY, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  Google Scholar 

  • Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Stephenson TJ, McIntyre CL, Collet C, Xue GP (2010) TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes. Funct Integr Genomics 10:265–276

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

    Article  CAS  PubMed  Google Scholar 

  • Szalai G, Janda T, Páldi E, Dubacq J-P (2001) Changes in the fatty acid unsaturation after hardening in wheat chromosome substitution lines with different cold tolerance. J Plant Physiol 158:663–666

    Article  CAS  Google Scholar 

  • Szalai G, Pap M, Janda T (2009a) Light-induced frost tolerance differs in winter and spring wheat plants. J Plant Physiol 166:1826–1831

    Article  CAS  PubMed  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009b) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Vítámvás P, Saalbach G, Prášil IT, Čapková V, Opatrná J, Jahoor A (2007) WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J Plant Physiol 164:1197–1207

    Article  PubMed  Google Scholar 

  • Vítámvás P, Kosová K, Prášilová P, Prášil IT (2010) Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. Plant Breed 129:611–616

    Article  Google Scholar 

  • Wang JH, Li SC, Sun M, Huang W, Cao H, Xu F, Zhou NN, Zhang SB (2013) Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy. Physiol Plant 147:283–295

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(suppl):S165–S183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yelenosky G (1979) Accumulation of free proline in citrus leaves during cold hardening of young trees in controlled temperature regimes. Plant Physiol 64:425–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126:1232–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaltsman A, Ori N, Adam Z (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. Plant Cell 17:2782–2790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by OTKA 104963. Thanks to Barbara Harasztos for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Janda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janda, T., Majláth, I. & Szalai, G. Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants. J Plant Growth Regul 33, 460–469 (2014). https://doi.org/10.1007/s00344-013-9381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9381-1

Keywords

Navigation