Skip to main content
Log in

Auxin as compère in plant hormone crosstalk

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The architecture of many hormone perceptions and signalling pathways has been recently well established, together with an awareness that plant hormone responses are the product of networks of interactions involving multiple hormones. As growth is quantitative, so are hormone responses, which underlie a systems approach to development and response. Auxin is arguably one of the best characterised hormones in plant development, and despite many excellent reviews on auxin perception, polar transport, and signal transduction, too little attention has been given to auxin crosstalk. This review, therefore, gives a précis of recent developments in hormone crosstalk involving auxin. For decades, the literature has described the involvement of multiple hormones in particular processes, although the mechanistic bases underlying points of crosstalk have been harder to pinpoint. Crosstalk falls into different categories, such as direct, indirect, or co-regulation. One conclusion for auxin crosstalk is that crosstalk operates extensively via the metabolism of other hormones, however, microarray approaches are increasingly identifying co-regulated genes and nodes of crosstalk at shared signalling components. Auxin crosstalk is often local, and is spatially and temporally regulated to provide adaptive value to environmental conditions and fine-tuning of responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ARE:

Auxin response element

AUX/IAA:

Auxin/IAA repressor protein

AXR1:

AUXIN INSENSITIVE1

BDL:

BODENLOS/IAA12

BR:

Brassinosteroid

COI1:

CORONATINE INSENSITIVE1

CUL1:

CULLIN 1

DELLA:

GRAS transcription factors containing a DELLA amino acid motif

ECR1:

E1 C-TERMINAL RELATED1

EIN2:

ETHYLENE INSENSITIVE2

EIN3:

ETHYLENE INSENSITIVE3

ET:

Ethylene

GA:

Gibberellin

GA3ox:

Gibberellin3 oxidase

GA20ox:

Gibberellin20 oxidase

HLS1:

HOOKLESS1

IAA:

Indole-3-acetic acid

IAR3:

IAA-ALANINE RESISTANT3

iPMP:

Isopentanyladenosine-5′-monophosphate

IPT:

Adenosine isopentanyl transferase

JA:

Jasmonic acid

JAZ:

Jasmonate ZIM-domain proteins

JR3:

JASMONIC RESPONSIVE3

MeJA:

Methyl jasmonate

PIN1:

PINFORMED1

RGA:

REPRESSOR OF GA1-3

SA:

Salicylic acid

SCF:

SKP1/CULLIN/F-BOX UBIQUITIN LIGASE

SHY2:

SHOOT HYPOCOTYL2

TAA:

TRYPTOPHAN AMINO TRANSFERASE

TIR1:

TRANSPORT INHIBITOR RESPONSE1

UPS:

Ubiquitin-26S proteasome system

WEI8, 12, 17:

WEAK ETHYLENE INDUCIBLE 8, 12, 17

References

  • Abel S, Nguyen MD, Chow W, Theologis A (1995) A primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherischia coli, and expression characteristics in response to auxin. J Biol Chem 270:19093–19099

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Vriezen WH, Van der Straeten D, Harberd N (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    Article  CAS  PubMed  Google Scholar 

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kujima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Arteca RN, Arteca JM (2008) Effects of brassinsteroid, auxin, and cytokinin on ethylene reduction in Arabidopsis thaliana plants. J Exp Bot 59:3019–3026

    Article  CAS  PubMed  Google Scholar 

  • Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterisation of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993

    Article  CAS  PubMed  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Hejátko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396

    Article  PubMed  CAS  Google Scholar 

  • Bennet T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Opin Plant Biol 16:553–563

    Google Scholar 

  • Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    Article  PubMed  CAS  Google Scholar 

  • Blagoeva E, Dobrev PI, Malbeck J, Motyka V, Gauinová A, Vaňková R (2004) Effect of cytokinins, auxins and adenine on cytokine N-glucosylation and cytokinin oxidase/dehydrogenase activity in de-rooted radish seedlings. Plant Growth Reg 44:15–23

    Article  CAS  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signalling molecule. Curr Biol 14:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Reoberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868

    Article  CAS  PubMed  Google Scholar 

  • Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, Frasse P, Latche A, Pech J-C, Bouzayen M (2009) SI-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot 60:1349–1362

    Article  CAS  PubMed  Google Scholar 

  • Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15:545–559

    Article  CAS  PubMed  Google Scholar 

  • Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The AP2 transcription factors DORNRÖSCHEN and DORNRÖSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134:1653–1662

    Article  CAS  PubMed  Google Scholar 

  • Chandler JW, Cole M, Flier A, Werr W (2009) BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNRÖSCHEN and DORNRÖSCHEN-LIKE. Plant Mol Biol 69:57–68

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  • Chen J-G, Ullah H, Temple B, Liang J, Guo J, Alonso JM, Ecker JR, Jones A (2006) RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. J Exp Bot 57:2697–2708

    Article  CAS  PubMed  Google Scholar 

  • Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11:486–494

    Article  CAS  PubMed  Google Scholar 

  • Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356

    Article  CAS  PubMed  Google Scholar 

  • Coenen C, Christian M, Lüthen H, Lomax TL (2003) Cytokinin inhibits a subset of diageotropica-dependent primary auxin responses in tomato. Plant Physiol 131:1692–1704

    Article  CAS  PubMed  Google Scholar 

  • Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W (2009) DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 136:1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Davies R, Goetz DH, Lasswell J, Anderson MN, Bartel B (1999) IAR3 encodes and auxin conjugate hydrolase from Arabidopsis. Plant Cell 11:365–376

    Article  CAS  PubMed  Google Scholar 

  • Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Desgagné-Penix I, Sponsel VM (2008) Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. J Exp Bot 59:2057–2070

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Karunarantha N, Jürgens G, Estelle M (2007) AXL and AXR have redundant functions in RUB conjugation and growth and development in Arabidopsis. Plant J 52:114–123

    Article  CAS  PubMed  Google Scholar 

  • Díaz J, Álvarez-Buylla ER (2006) A model of the ethylene signaling pathway and its gene response in Arabidopsis thaliana: pathway cross-talk and noise-filtering properties. Chaos 16:023112

    Article  PubMed  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    Article  CAS  PubMed  Google Scholar 

  • Dugardeyn J, Vandenbussche F, Van Der Straeten D (2008) To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis? J Exp Bot 59:1–16

    Article  CAS  PubMed  Google Scholar 

  • Eklöf S, Åstot C, Blackwell J, Moritz T, Olsson O, Sandberg G (1997) Auxin-cytokinin interactions in wild type and transgenic tobacco. Plant Cell Physiol 38:225–235

    Google Scholar 

  • Eklöf S, Åstot C, Sitbon F, Moritz T, Olsson O, Sandberg G (2000) Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild type hormone levels but display both auxin- and cytokinin-overproduction phenotypes. Plant J 23:279–284

    Article  PubMed  Google Scholar 

  • Federoff N (2002) Cross-talk in abscisic acid signaling. Sci STKE 2002(140):RE10

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    Article  CAS  PubMed  Google Scholar 

  • Frigerio M, Alabadí D, Péréz-Gómez J, Garcia-Cárcel L, Phillils AJ, Hedden P, Blázquez MA (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin responses. Nature 421:740–743

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinkozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99:11519–11524

    Article  CAS  PubMed  Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K (2007) Auxin herbicide action, lifting the veil step by step. Plant Signal Behav 2:421–423

    PubMed  Google Scholar 

  • Grsic S, Kirchheim B, Pieper K, Fritsch M, Hilgenberg W, Ludwig-Müller J (1999) Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiol Plant 105:521–531

    Article  CAS  Google Scholar 

  • Grunewald W, Vanholme B, Pauwels L, Plovie E, Inzé D, Gheyson G, Goossens A (2009) Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–928

    Article  CAS  PubMed  Google Scholar 

  • Gubler F, Jacobsen JV (1992) Gibberellin responsive elements in the promoter of a barley high pI alpha amylase gene. Plant Cell 4:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Hardtke CS (2007) Transcriptional auxin-brassinosteroid crosstalk: who`s talking? Bioessays 29:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol 8:389–396

    Article  CAS  PubMed  Google Scholar 

  • Hartweck LM (2008) Gibberellin signaling. Planta 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    Article  CAS  PubMed  Google Scholar 

  • Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, Nakagawa H, Sato T (2000) Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-Ac 2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Plant Sci 159:173–181

    Article  CAS  PubMed  Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species: genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    Article  CAS  PubMed  Google Scholar 

  • Katsir L, Chung HS, Koo AJK, Howe GA (2008) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435

    Article  CAS  PubMed  Google Scholar 

  • Kepinsky S, Leyser O (2005) The Arabidopsis F-box protein is an auxin receptor. Nature 435:446–451

    Article  CAS  Google Scholar 

  • Knight H, Knight M (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Zeng W, Sheen J (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395:716–720

    Article  CAS  PubMed  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy KT, Walcher CL, Nemhauser J (2009) Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69:375–381

    Article  CAS  PubMed  Google Scholar 

  • Lazar G, Goodman HM (2006) MAX1, a regulator of the flavenoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci USA 103:472–476

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Johnston R, Yang A, Gallavotti A, Kojima M, Travençoio BA, Costa Lda F, Sakakibara H, Jackson D (2009) Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol 150:205–216

    Article  CAS  PubMed  Google Scholar 

  • León J, Rojo E, Titarenko E, Sánchez-Serrano JJ (1998) Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana. Mol Gen Genet 258:412–419

    Article  PubMed  Google Scholar 

  • Li L, Xu J, Xu ZH, Xue HW (2003) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753

    Article  CAS  Google Scholar 

  • Li H, Johnson P, Stepanova A, Alonso J, Ecker J (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    Article  CAS  PubMed  Google Scholar 

  • Li J, Dai X, Zhao Y (2006) A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol 140:899–908

    Article  CAS  PubMed  Google Scholar 

  • Liu ZB, Ulmasov T, Shi XY, Hagen G, Guilfoyle TJ (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657

    Article  CAS  PubMed  Google Scholar 

  • Lokerse AS, Weijers D (2009) Auxin enters the matrix-assembly of response machineries for specific outputs. Curr Opin Plant Biol 12:520–526

    Article  CAS  PubMed  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    Article  CAS  PubMed  Google Scholar 

  • Mishra BS, Singh M, Aggrawal P, Laxmi A (2009) Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE 4:1–13

    Article  CAS  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  CAS  PubMed  Google Scholar 

  • Mockaitis K, Howells SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785–796

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Zhao Y, Dai X, Zhang W, Gray WM, Huq E, Estelle M (2007) A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. Plant Physiol 143:684–696

    Article  CAS  PubMed  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    Article  CAS  PubMed  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Goda H, Shimada Y, Yoshida S (2004) Brassinosteroid selectively regulates PIN gene expression in Arabidopsis. Biosci Biotech Biochem 68:952–954

    Article  CAS  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PloS Biol 2:e258

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101:8039–8044

    Article  PubMed  Google Scholar 

  • O`Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982

    Article  CAS  Google Scholar 

  • Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  • Peng Z-Y, Zhou X, Li L, Yu X, Li H, Jiang Z, Cao G, Bai M, Wang X, Jiang C, Lu H, Hou X, Qu L, Wang Z, Zuo J, Fu X, Su Z, Li S, Guo H (2009) Arabidopsis hormone database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Res 37:D975–D982

    Article  CAS  PubMed  Google Scholar 

  • Pernisová M, Klíma P, Horák J, Válková M, Malbeck J, Soucek P, Reichman P, Hoyerová K, Dubová J, Friml J, Zazímalová E, Hejátko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci USA 106:3609–3614

    Article  PubMed  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23:512–521

    Article  CAS  PubMed  Google Scholar 

  • Quint M, Ito H, Zhang W, Gray WM (2005) Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases. Plant J 43:371–383

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Friml J (2009) Auxin and other signals on the move in the plants. Nat Chem Biol 5:325–332

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  CAS  Google Scholar 

  • Růžička K, Šimášková M, Duclercq J, Petrášek J, Zažimalová E, Simon S, Friml J, Van Montagu MCE, Benková E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci USA 106:4284–4289

    Article  PubMed  Google Scholar 

  • Sato S-S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435

    Article  CAS  Google Scholar 

  • Serrani JC, Ruiz-Rivero O, Fos M, Garcia-Martinez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934

    Article  CAS  PubMed  Google Scholar 

  • Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC (2007) Analysis of the DECREASED APICAL DOMIANCE genes of petunia in the control of axillary branching. Plant Physiol 143:697–706

    Article  CAS  PubMed  Google Scholar 

  • Staswick PE (2009) The tryptophan conjugates of jasmonic acid and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol 150:1310–1321

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Yun J, Likhaecheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Teitz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2006) Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot 57:2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Tiryaki I, Staswick PE (2002) An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiol 130:887–894

    Article  CAS  PubMed  Google Scholar 

  • Titarenko E, Rojo E, León J, Sánchez-Serrano JJ (1997) Jasmonic acid-dependent and -independent signalling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol 115:817–826

    Article  CAS  PubMed  Google Scholar 

  • Trindade LM, van Berloo R, Liers M, Visser RG (2005) PRECISE: software for prediction of cis-acting regulatory elements. J Hered 96:618–622

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN-INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser J (2008) Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc Natl Acad Sci USA 105:9829–9834

    Article  CAS  PubMed  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nature Rev Mol Cell Biol 10:385–397

    Article  CAS  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  CAS  PubMed  Google Scholar 

  • Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214:153–157

    Article  CAS  PubMed  Google Scholar 

  • Wolbang CM, Chandler PM, Smith JJ, Ross JJ (2004) Auxin from the developing inflorescences is required for the biosynthesis of active gibberellins in barley stems. Plant Physiol 134:769–776

    Article  CAS  PubMed  Google Scholar 

  • Woltering EJ, Balk PA, Nijenhuis-Devries MA, Faivre M, Ruys G, Somhorst D, Philosoph-Hadas S, Friedman H (2005) An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems. Planta 220:403–413

    Article  CAS  PubMed  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  Google Scholar 

  • Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT (1999) Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol Biol 41:443–454

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Guo H (2008) Genetic basis of ethylene perception and signal transduction in Arabidopsis. J Integr Plant Biol 50:808–815

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF2 encoding an orthologue of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–696

    Article  CAS  PubMed  Google Scholar 

  • Zurek DM, Rayle DL, McMorris TC, Clouse SD (1994) Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiol 104:505–513

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JWC gratefully acknowledges funding from the Deutsche Forschungsgemeinschaft via SFB572 and the anonymous reviewers whose comments improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Chandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandler, J.W. Auxin as compère in plant hormone crosstalk. Planta 231, 1–12 (2009). https://doi.org/10.1007/s00425-009-1036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1036-x

Keywords

Navigation