Skip to main content
Log in

Comparative Analysis of Microbial Diversity in Termite Gut and Termite Nest Using Ion Sequencing

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Termite gut and termite nest possess complex microbial communities. However, only limited information is available on the comparative investigation of termite gut- and nest-associated microbial communities. In the present study, we examined and compared the bacterial diversity of termite gut and their respective nest by high-throughput sequencing of V3 hypervariable region of 16S rDNA. A total of 14 barcoded libraries were generated from seven termite gut samples and their respective nest samples, and sequenced using Ion Torrent platform. The sequences of each group were pooled, which yielded 170,644 and 132,000 reads from termite gut and termite nest samples, respectively. Phylogenetic analysis revealed significant differences in the bacterial diversity and community structure between termite gut and termite nest samples. Phyla Verrucomicrobia and Acidobacteria were observed only in termite gut, whereas Synergistetes and Chlorobi were observed only in termite nest samples. These variations in microbial structure and composition could be attributed with the differences in physiological conditions prevailing in the termite gut (anoxic and alkaline) and termite nest (oxic, slightly acidic and rich in organic matter) environment. Overall, this study unmasked the complexity of bacterial population in the respective niche. Interestingly, majority of the sequence reads could be classified only up to the domain level indicating the presence of a huge number of uncultivable or unidentified novel bacterial species in both termite gut and nest samples. Whole metagenome sequencing and assessing the metabolic potential of these samples will be useful for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abe T, Bignell DE, Higashi M (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic Publisher, Dordrecht

    Book  Google Scholar 

  2. Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur J Soil Biol 36:117–125

    Article  Google Scholar 

  3. Breznak JA (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  4. Breznak JA (2002) Phylogenetic diversity and physiology of termite gut spirochetes. Integr Comp Biol 42:313–318

    Article  PubMed  Google Scholar 

  5. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhary PP, Gaci N, Borrel G, O’Toole PW, Brugere JF (2015) Molecular methods for studying methanogens of the human gastrointestinal tract: current status and future directions. Appl Microbiol Biotechnol 99:5801–5815

    Article  CAS  PubMed  Google Scholar 

  7. Chouvenc J, Yaosu N, Robert A (2010) Inhibition of the fungal pathogen, Metarhizium anisopliae in the alimentary tracts, of five termite species. Fla Entomol 93:467–469

    Article  Google Scholar 

  8. Eggleton P, Homathevi R, Jeeva D, Jones DT, Davies RG, Maryati M (1997) The species richness of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica 3:119–128

    Google Scholar 

  9. Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Luc Chotte J, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil feeding termite mounds. Microb Ecol 28:191–199

    Article  Google Scholar 

  11. Fujita A, Abe T (2002) Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites. Physiol Entomol 27:76–78

    Article  CAS  Google Scholar 

  12. Garnier-Sillam E, Harry M (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insectes Soc 42:167–185

    Article  Google Scholar 

  13. Garnier-Sillam E, Villemin G, Toutain F, Renoux J (1985) Formation of organo-mineral micro-aggregates in termites faeces. Comptes Rendus de l’Academie des Sciences Serie 3 Sciences de la Vie 301:213–218

  14. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74(6):1145–1151

    Article  CAS  PubMed  Google Scholar 

  16. Hongoh Y, Sato T, Dolan MF, Noda S, Ui S, Kudo T, Ohkuma M (2007) The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73:6270–6276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Konig H, Varma A (2006) Intestinal microorganisms of termites and other invertebrates, vol 6. Springer, Heidelberg

    Google Scholar 

  18. Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A (2015) New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of "Candidatus Methanoplasma termitum". Appl Environ Microbiol 81:1338–1352

    Article  PubMed Central  PubMed  Google Scholar 

  19. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by Spirochetes from termite guts. Science 283:686–689

    Article  CAS  PubMed  Google Scholar 

  20. Lilburn T, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut Spirochaetes. Environ Microbiol 4:331–345

    Article  Google Scholar 

  21. Makarova K, Aravind L, Wolf Y, Tatusov L, Minton W, Koonin V, Daly J (2001) Genome of the extremely radiation—resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Makonde HM, Mwirichia R, Osiemo Z, Boga HI, Klenk HP (2015) 454 Pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. Springerplus 4:1–11

    Article  CAS  Google Scholar 

  23. Manjula A, Sathyavathi S, Pushpanathan M, Gunasekaran P, Rajendhran J (2014) Microbial diversity in termite nest. Curr Sci 106:1430–1434

    Google Scholar 

  24. Manjula A, Sathyavathi S, Gunasekaran P, Rajendhran J (2011) Comparison of seven methods of DNA extraction from termitarium for functional metagenomic DNA library construction. J Sci Ind Res 70:945–951

    CAS  Google Scholar 

  25. Miyagawa S, Koyama Y, Kokubo M, Matsushita Y, Adachi Y, Sivilay S, Kawakubo N, Oba S (2011) Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos. J Ethnobiol Ethnomed 7:24

    Article  PubMed Central  PubMed  Google Scholar 

  26. Nakajima H, Hongoh Y, Noda S, Yoshida Y, Usami R, Kudo T, Ohkuma M (2006) Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of termites. Biosci Biotechnol Biochem 70(1):211–218

    Article  CAS  PubMed  Google Scholar 

  27. Noda S, Inoue T, Hongoh Y, Kawai M, Nalepa CA, Vongkaluang C et al (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20

    Article  CAS  PubMed  Google Scholar 

  28. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulotermes speratus. Appl Environ Microbiol 62:461–468

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565

    Article  CAS  PubMed  Google Scholar 

  30. Schloss PD (2010) The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput Biol 6:e1000844

    Article  PubMed Central  PubMed  Google Scholar 

  31. Schmitt-Wagner D, Friedrich M, Wagner B, Brune A (2003) Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp). Appl Environ Microbiol 69:6018–6024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N, Kudo T (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238

    Article  PubMed  Google Scholar 

  33. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  34. Watson JP (1977) The use of mounds of the termite Macrotermes falciger (Gerstacker) as a soil amendment. J Soil Sci 28:664–672

    Article  CAS  Google Scholar 

  35. Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM (2012) Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Env Microbiol 78:1544–1555

    Article  CAS  Google Scholar 

  36. Wood TG (1998) Termites and the soil environment. Biol Fert Soils 6:228–236

    Google Scholar 

  37. Yang H, Schimitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CSIR-SRF (Council of Scientific and Industrial Research-Senior Research Fellowship) New Delhi for providing financial support. We would also extend our thanks to central facilities UGC-CAS, UGC-NRCBS, DBT-IPLS and DST-PURSE programs at School of Biological Sciences, Madurai Kamaraj University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyaprakash Rajendhran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Arumugam Manjula and Muthuirulan Pushpanathan contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2015_947_MOESM1_ESM.tif

Phylogenetic comparison of bacterial community between termite gut and termite nest samples. The sequence reads obtained from seven termite gut and termite nest samples were combined to assess the overall phylum distribution among these samples. The data set was subjected to normalization in MG-RAST analysis tool and the values of two individual samples were scaled from 0 (minimum) to 1 (maximum). The circles are coloured at different phylum and the bar chart within the circle indicates the abundance distribution of different phyla at genus level. The red and green bar indicates the genus distribution within different phyla in termite gut and termite nest samples, respectively. Supplementary material 1 (TIFF 2777 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, A., Pushpanathan, M., Sathyavathi, S. et al. Comparative Analysis of Microbial Diversity in Termite Gut and Termite Nest Using Ion Sequencing. Curr Microbiol 72, 267–275 (2016). https://doi.org/10.1007/s00284-015-0947-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0947-y

Keywords

Navigation