Skip to main content
Log in

A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chinese liquorice (Glycyrrhiza uralensis Fish.) is a salt-tolerant medicinal legume that could be utilized for bioremediation of salt-affected soils. We studied whether co-inoculation of the symbiotic Mesorhizobium sp. strain NWXJ19 or NWXJ31 with the plant growth-promoting Pseudomonas extremorientalis TSAU20 could restore growth, nodulation, and shoot/root nitrogen contents of salt-stressed G. uralensis, which was grown in potting soil and irrigated with 0, 50, and 75 mM NaCl solutions under greenhouse conditions. Irrigation with NaCl solutions clearly retarded the growth of uninoculated liquorice, and the higher the NaCl concentration (75 and 100 mM NaCl), the more adverse is the effect. The two Mesorhizobium strains, added either alone or in combination with P. extremorientalis TSAU20, responded differently to the salt levels used. The strain NWXJ19 was a good symbiont for plants irrigated with 50 mM NaCl, whereas the strain NWXJ31 was more efficient for plants irrigated with water or 75 mM NaCl solution. P. extremorientalis TSAU20 combined with single Mesorhizobium strains alleviated the salt stress of liquorice plants and improved yield and nodule numbers significantly in comparison with single-strain-inoculated liquorice. Both salt stress and inoculation raised the nitrogen content of shoots and roots. The nitrogen contents were at their highest, i.e., 30 and 35 % greater compared to non-stressed uninoculated plants, when plants were inoculated with P. extremorientalis TSAU20 and Mesorhizobium sp. NWXJ31 as well as irrigated with 75 mM NaCl solution. From this study, we conclude that dual inoculation with plant growth-promoting rhizobacteria could be a new approach to improve the tolerance of G. uralensis to salt stress, thereby improving its suitability for the remediation of saline lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Ahmad P (2013) Oxidative damage to plants, antioxidant networks and signaling. Academic, Elsevier, San Diego

    Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Phys Biochem 63:170–176. doi:10.1016/j.plaphy.2012.11.024

    Article  CAS  Google Scholar 

  • Beringer JB (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríquez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogin RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum AUR9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493. doi:10.1007/s11104-009-0127-6

    Article  CAS  Google Scholar 

  • Dhingra D, Sharma A (2006) Antidepressant-like activity of Glycyrrhiza glabra L. in mouse models of immobility tests. Prog Neuropsychopharmacol Biol Psychiatry 30:449–454

    Article  PubMed  Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Env 57(3):122–127

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45:561–573. doi:10.1007/s00374-009-0366-y

    Article  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2010) Root colonizing Pseudomonas spp. improve growth and symbiosis performance of fodder galega (Galega orientalis LAM) grown in potting soil. Eur J Soil Biol 46(3-4):269–272. doi:10.1016/j.ejsobi.2010.01.005

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fert Soils 47:197–205. doi:10.1007/s00374-010-0523-3

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013a) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root colonizing Pseudomonas. Plant Soil 369(1):453–465. doi:10.1007/s11104-013-1586-3

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth S (2013b) Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Arora NK (ed) Plant microbe symbiosis—fundamentals and advances. Springer, New Delhi, pp 291–303

    Chapter  Google Scholar 

  • Egamberdieva D, Jabborova D, Mamadalieva N (2013c) Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress condition. Med Aromat Plant Sci Biotechnol 7(1):7–10

    Google Scholar 

  • FAO (2008) Land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush

  • Fukai T, Ali M, Kaitou K, Kanda T, Terada S, Nomura T (2002) Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci 71:1449–1463

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scient 2012:963401

    Article  Google Scholar 

  • Hayashi H, Sudo H (2009) Economic importance of licorice. Plant Biotechnol 26:101–104

    Article  CAS  Google Scholar 

  • Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE 9(3):e92598

    Article  PubMed Central  PubMed  Google Scholar 

  • Huq SMI, Larher F (1983) Osmoregulation in higher plants: effect of NaCl salinity on non-nodulated Phaseolus aureus L. New Phytol 93:209–216

    Article  CAS  Google Scholar 

  • Jabborova D, Egamberdieva D, Räsänen L, Liao H (2013) Salt tolerant Pseudomonas strain improved growth, nodulation and nutrient uptake of soybean grown under hydroponic salt stress condition. In: XVII. International Plant Nutrition Colloquium and Boron Satellite Meeting Proceedings Book (2013). Sabanci University, Istanbul, Turkey. http://plantnutrition.org/en/ 2013ipnc-b-proceedings.html, pp. 260-261

  • Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. J Plant Biochem Physiology 1:4. doi:10.4172/2329-9029.1000e113

    Google Scholar 

  • Kushiev H, Noble AD, Abdullaev I, Toshbekov V (2005) Remediation of abandoned saline soils using Glycyrrhiza glabra: a study for the hungry steppes of Central Asia. Inter J Agric Sustain 3:102–113

    Article  Google Scholar 

  • Li L, Sinkko H, Montonen L, Wei G, Lindström K, Räsänen LA (2012) Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microb Ecol 79:46–68. doi:10.1111/j.1574-6941.2011.01198.x

    Article  CAS  Google Scholar 

  • Li W, Hou J, Wang W, Tang X, Liu C, Xing D (2011) Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis. Russian J Plant Physiol 58:538–542. doi:10.1134/S1021443711030101

    Article  CAS  Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world royal botanic gardens. Kew, London

    Google Scholar 

  • Mateos PF, Jimenez-Zurdo JI, Chen J, Squartini AS, Haack SK, Martinez-Molina E, Hubbell DH, Dazzo FB (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58(6):1816–1822

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1016/j.tplants.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  • Marui A, Nagafuchi T, Shinogi Y, Yasufuku N, Omine K, Kobayashi T, Shinka T, Tuvshintogtokh I, Mandakh B, Munkhjargal B (2012) Soil physical properties to grow the wild licorice at semi-arid area in Mongolia. J Arid Land Studies 22(1):33–36

    Google Scholar 

  • Mensah JK, Ihenyen J (2009) Effects of salinity on germination, seedling establishment and yield of three genotypes of mung bean (Vigna mungo L. Hepper) in Edo State, Nigeria. Nigerian Ann Nat Sci 8(2):17–24

    Google Scholar 

  • Mizutani K, Kuramoto T, Tamura Y, Ohtake N, Doi S, Nakaura M, Tanaka O (1994) Sweetness of glycyrrhetinic acid 3-O-mono-β-D-glucuronide and related glycosides. Biosci Biotechnol Biochem 58:554–555

    Article  CAS  PubMed  Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Poljak M, Romic M (2009) Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium contaminated environment. Cereal Res Comm 37:9–12

    CAS  Google Scholar 

  • Patil SM, Patil MB, Sapkale GN (2009) Antimicrobial activity of Glycyrrhiza glabra Linn. roots. Int J Chem Sci 7(1):585–591

    CAS  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752. doi:10.1007/s13593-014-0233-6

    Article  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Näsholm T, Schmidt S, Lonhienne TGA (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS ONE 5(7):e11915. doi:10.1371/journal.pone.0011915

    Article  PubMed Central  PubMed  Google Scholar 

  • Penttinen P, Räsänen LA, Lortet G, Lindström K (2013) Stable isotope labelling reveals that NaCl stress decreases the production of Ensifer (Sinorhizobium) arboris lipochitooligosaccharide signaling molecules. FEMS Microbiol Lett 349:117–126. doi:10.1111/1574-6968.12303

    Article  CAS  PubMed  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445. doi:10.1007/s00248-011-9827-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Prakamhang J, Tittabutr P, Boonkerd N, Teamtisong K, Uchiumi T, Abe M, Teaumroong N (2015) Proposed some interactions at molecular level of PGPR co-inoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49. doi:10.1016/j.apsoil.2014.08.009

    Article  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotech 4(3):210–222

    CAS  Google Scholar 

  • Sánchez AC, Gutiérrez RT, Santana RC, Urrutia AR, Fauvart M, Michiels J, Vanderleyden J (2014) Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur J Soil Biol 62:105–112. doi:10.1016/j.ejsobi.2014.03.004

    Article  Google Scholar 

  • Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Krämer U, Kopka J, Udvardi MK (2008) Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J 53:973–987

    Article  CAS  PubMed  Google Scholar 

  • Shabani L, Ehsanpour AA, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russian J Plant Physiol 56:621–626

    Article  CAS  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg B (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Inter 9:600–607

    Article  CAS  Google Scholar 

  • Shanker AK, Venkateswarlu B (2011) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka

    Book  Google Scholar 

  • Schulz V, Hänsel R, Tyler VE (1998) Rational phytotherapy. A physicians’ guide to herbal medicine. Springer, Berlin, pp 160–187

    Book  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. cicer in chickpea. Microbiol Res 156:353–358

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, London

    Google Scholar 

  • Subbarao GV, Johansen C, Kumar Rao JVDK, Jana MK (1990) Response of the pigeonpea-Rhizobium symbiosis to salinity stress: variation among Rhizobium strains in symbiotic ability. Biol Fertil Soils 9:49–53

    Article  Google Scholar 

  • Soil Science Society of America (2001) Glossary of soil science terms. Soil Science Society of America, Madison

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57(1):67–71. doi:10.1111/j.1365-2389.2006.00771.x

    Article  CAS  Google Scholar 

  • Van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agr Water Man 51:87–98. doi:10.1016/S0378-3774(01)00114-7

    Article  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell, Oxford

    Google Scholar 

  • Warrence NJ, Bauder JW, Pearson KE (2004) Salinity, sodicity and flooding tolerance of selected plant species of the northern Cheyenne Reservation. Montana State University, Missoula

    Google Scholar 

  • Wei GH, Yang XY, Zhang ZX, Yang YZ, Lindström K (2008) Strain Mesorhizobium sp. CCNWGX035: a stress-tolerant isolate from Glycyrrhiza glabra displaying a wide host range of nodulation. Pedosphere 18(1):102–112. doi:10.1016/S1002-0160(07)60108-8

    Article  CAS  Google Scholar 

  • Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd JED, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. PNAS 109:633–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadegari M, Rahmani A (2010) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting Rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5:792–799

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Funding

This research was supported by the UNESCO-L’OREAL and Georg Forster Research Fellowship (НERMES), Alexander von Humboldt Foundation for DE, and by the National Natural Science Foundation of China (grant number 31200008) and the West Light Foundation of Chinese Academy of Sciences (grant number XBBS201305) for LL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egamberdieva, D., Li, L., Lindström, K. et al. A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Appl Microbiol Biotechnol 100, 2829–2841 (2016). https://doi.org/10.1007/s00253-015-7147-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7147-3

Keywords

Navigation